欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

A. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若
PB
PA
=
1
2
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點的個數(shù)為:
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)
函數(shù)f(x)=x2-x-a2+a+1對于任一實數(shù)x,均有f(x)≥0.則實數(shù)a滿足的條件是
 

B.(幾何證明選做題)
如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
3
,AB=BC=4,則AC的長為
 

C.(坐標系與參數(shù)方程選做題)
在極坐標系中,曲線ρ=4cos(θ-
π
3
)
上任意兩點間的距離的最大值為
 

查看答案和解析>>

精英家教網(wǎng)A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如圖,AB是⊙O的直徑,P是AB延長線上的一點,過P作⊙O的切線,切點為CPC=2
3
,若∠CAP=30°,則⊙O的直徑AB=
 

C.(極坐標系與參數(shù)方程選做題)若圓C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ為參數(shù))
與直線x-y+m=0相切,則m=
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
 


B.(幾何證明選做題)如圖,直線PC與圓O相切于點C,割線PAB經(jīng)過圓心O,
弦CD⊥AB于點E,PC=4,PB=8,則CE=
 

C.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
π
4
)=2
2
的距離為
 

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

  • <i id="cpe80"><input id="cpe80"></input></i>
      <source id="cpe80"></source>
      1. <output id="cpe80"><th id="cpe80"></th></output>

      20090109

      三:解答題

      17.解:(1)由已知

         ∴ 

         ∵  

      ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

          又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

      所以                                                                                    

      (2)在△ABC中,   

                  

              

           而   

      如果,

          

                                                                         

                                        

      18.解:(1)點A不在兩條高線上,

       不妨設(shè)AC邊上的高:,AB邊上的高:

      所以AC,AB的方程為:,

      ,即

      由此可得直線BC的方程為:。

      (2)

      由到角公式得:,

      同理可算。

      19.解:(1)令

         則,因,

      故函數(shù)上是增函數(shù),

      時,,即

         (2)令

          則

          所以在(,―1)遞減,(―1,0)遞增,

      (0,1)遞減,(1,)遞增。

      處取得極小值,且

      故存在,使原方程有4個不同實根。

      20.解(1)連結(jié)FO,F是AD的中點,

      *  OFAD,

      EO平面ABCD

      由三垂線定理,得EFAD,

      AD//BC,

      EFBC                          

      連結(jié)FB,可求得FB=PF=,則EFPB,

      PBBC=B,

       EF平面PBC。 

      (2)連結(jié)BD,PD平面ABCD,過點E作EOBD于O,

      連結(jié)AO,則EO//PD

      且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

      E是PB的中點,則O是BD的中點,且EO=PD=1

      在Rt△EOA中,AO=,

         所以:異面直線PD與AE所成的角的大小為

      (3)取PC的中點G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

      * PD平面ABCD,

      * PDBC,又DCBC,且PDDC=D,

      BC平面PDC

      * BCPC,

      EG//BC,則EGPC,

      FGPC

      所以FGE是二面角F―PC―B的平面角                                   

      在Rt△FEG中,EG=BC=1,GF=

      ,

      所以二面角F―PC―B的大小為   

      21.解(1), 

      ,

         ,令,

      所以遞增

      ,可得實數(shù)的取值范圍為

      (2)當(dāng)時,

         所以:

      即為 

      可化為

      由題意:存在,時,

      恒成立

      ,

      只要

       

      所以:,

      ,知

      22.證明:(1)由已知得

        

      (2)由(1)得

      =