欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

21.函數(shù)在及處有極值.且 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分) 已知函數(shù)處有極值.

(Ⅰ)求實數(shù)值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)試問是否存在實數(shù),使得不等式對任意 及

恒成立?若存在,求出的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分12分)

已知函數(shù)為自然對數(shù)的底數(shù)).

(Ⅰ)求F(x)=f(x)g(x)的單調(diào)區(qū)間,若F(x)有最值,請求出最值;

(Ⅱ)是否存在正常數(shù),使f(x)與g(x)的圖象有且只有一個公共點,且在該公共點處有共同的切線?若存在,求出的值,以及公共點坐標(biāo)和公切線方程;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分12分)

   已知函數(shù)的圖象在處的切線與軸平行.

(1)求的關(guān)系式及f(x)的極大值;

(2)若函數(shù)在區(qū)間上有最大值為,試求的值.

 

查看答案和解析>>

(本小題滿分12分)

    已知函數(shù)的圖象在處的切線與軸平行.

   (1)求的關(guān)系式及fx)的極大值;

   (2)若函數(shù)在區(qū)間上有最大值為,試求的值.

 

查看答案和解析>>

(本小題滿分12分) 已知函數(shù)處有極值.
(Ⅰ)求實數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)試問是否存在實數(shù),使得不等式對任意 及
恒成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

        20090109

        三:解答題

        17.解:(1)由已知

           ∴ 

           ∵  

        ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

            又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

        所以                                                                                    

        (2)在△ABC中,   

                    

                

             而   

        如果,

            

                                                                           

                                          

        18.解:(1)點A不在兩條高線上,

         不妨設(shè)AC邊上的高:,AB邊上的高:

        所以AC,AB的方程為:,

        ,即

        ,

        由此可得直線BC的方程為:

        (2),

        由到角公式得:

        同理可算,

        19.解:(1)令

           則,因,

        故函數(shù)上是增函數(shù),

        時,,即

           (2)令

            則

            所以在(,―1)遞減,(―1,0)遞增,

        (0,1)遞減,(1,)遞增。

        處取得極小值,且

        故存在,使原方程有4個不同實根。

        20.解(1)連結(jié)FO,F是AD的中點,

        *  OFAD,

        EO平面ABCD

        由三垂線定理,得EFAD,

        AD//BC,

        EFBC                          

        連結(jié)FB,可求得FB=PF=,則EFPB,

        PBBC=B,

         EF平面PBC。 

        (2)連結(jié)BD,PD平面ABCD,過點E作EOBD于O,

        連結(jié)AO,則EO//PD

        且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

        E是PB的中點,則O是BD的中點,且EO=PD=1

        在Rt△EOA中,AO=,

           所以:異面直線PD與AE所成的角的大小為

        (3)取PC的中點G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

        * PD平面ABCD,

        * PDBC,又DCBC,且PDDC=D,

        BC平面PDC

        * BCPC,

        EG//BC,則EGPC,

        FGPC

        所以FGE是二面角F―PC―B的平面角                                   

        在Rt△FEG中,EG=BC=1,GF=

        ,

        所以二面角F―PC―B的大小為   

        21.解(1), 

        ,

           ,令,

        所以遞增

        ,可得實數(shù)的取值范圍為

        (2)當(dāng)時,

           所以:

        即為 

        可化為

        由題意:存在,時,

        恒成立

        ,

        只要

         

        所以:,

        ,知

        22.證明:(1)由已知得

          

        (2)由(1)得

        =