題目列表(包括答案和解析)
若
的展開式中第3項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)相等,則該展開式中
的系數(shù)為_________.
【解析】因?yàn)檎归_式中的第3項(xiàng)和第7項(xiàng)的二項(xiàng)式系數(shù)相同,即
,所以
,所以展開式的通項(xiàng)為
,令
,解得
,所以
,所以
的系數(shù)為
.
設(shè)數(shù)列
的各項(xiàng)均為正數(shù).若對(duì)任意的
,存在
,使得
成立,則稱數(shù)列
為“Jk型”數(shù)列.
(1)若數(shù)列
是“J2型”數(shù)列,且
,
,求
;
(2)若數(shù)列
既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列
是等比數(shù)列.
【解析】1)中由題意,得
,
,
,
,…成等比數(shù)列,且公比
,
所以.![]()
(2)中證明:由{
}是“j4型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為t. 由{
}是“j3型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為
;
,…成等比數(shù)列,設(shè)公比為
;
…成等比數(shù)列,設(shè)公比為
;
已知正項(xiàng)數(shù)列
的前n項(xiàng)和
滿足:
,
(1)求數(shù)列
的通項(xiàng)
和前n項(xiàng)和
;
(2)求數(shù)列
的前n項(xiàng)和
;
(3)證明:不等式
對(duì)任意的
,
都成立.
【解析】第一問中,由于
所以![]()
兩式作差
,然后得到![]()
從而
得到結(jié)論
第二問中,
利用裂項(xiàng)求和的思想得到結(jié)論。
第三問中,![]()
![]()
又![]()
結(jié)合放縮法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正項(xiàng)數(shù)列
,∴
∴
又n=1時(shí),![]()
∴
∴數(shù)列
是以1為首項(xiàng),2為公差的等差數(shù)列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
對(duì)任意的
,
都成立.
設(shè)函數(shù)f(x)=
在[1,+∞
上為增函數(shù).
(1)求正實(shí)數(shù)a的取值范圍;
(2)比較
的大小,說明理由;
(3)求證:
(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:
,依題意得:
≥0對(duì)x∈[1,+∞
恒成立
∴ax-1≥0對(duì)x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上為增函數(shù),
∴n≥2時(shí):f(
)=
(3) ∵
∴![]()
已知
是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若
,是否存在
,有
?請(qǐng)說明理由;
(Ⅱ)若
(a、q為常數(shù),且aq
0)對(duì)任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若
試確定所有的p,使數(shù)列
中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請(qǐng)證明.
【解析】第一問中,由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)
反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
![]()
由
,得
![]()
當(dāng)
為奇數(shù)時(shí),此時(shí),一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時(shí),命題都成立
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com