欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(2)記.為的前n項和.求的值. 查看更多

 

題目列表(包括答案和解析)

記數(shù)列{}的前n項和為為,且+n=0(n∈N*)恒成立.

(1)求證:數(shù)列是等比數(shù)列;

(2)已知2是函數(shù)f(x)=+ax-1的零點,若關(guān)于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數(shù)λ的取值范圍.

 

查看答案和解析>>

記數(shù)列{}的前n項和為為,且+n=0(n∈N*)恒成立.
(1)求證:數(shù)列是等比數(shù)列;
(2)已知2是函數(shù)f(x)=+ax-1的零點,若關(guān)于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數(shù)λ的取值范圍.

查看答案和解析>>

記數(shù)列{}的前n項和為為,且+n=0(n∈N*)恒成立.
(1)求證:數(shù)列是等比數(shù)列;
(2)已知2是函數(shù)f(x)=+ax-1的零點,若關(guān)于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數(shù)λ的取值范圍.

查看答案和解析>>

數(shù)列的前n項和記為,,在直線,nN*

1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式

2)設(shè),是數(shù)列的前n項和,的值.

 

查看答案和解析>>

數(shù)列{}的前n項和記為,a1=t,=2+1(n∈N).

       (Ⅰ)當(dāng)t為何值時,數(shù)列{}是等比數(shù)列;

       (Ⅱ)在(Ⅰ)的條件下,若等差數(shù)列{}的前n項和有最大值,且=15,又

       a1+b1,a2+b2,a3+b3成等比數(shù)列,求

 

 

查看答案和解析>>

 

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=,

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                           

6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學(xué)被抽到的概率為

設(shè)有名男同學(xué),則男、女同學(xué)的人數(shù)分別為

(2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有種,其中有一名女同學(xué)的有

選出的兩名同學(xué)中恰有一名女同學(xué)的概率為

(3),

,

第二同學(xué)的實驗更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點   

<ul id="4uiq6"></ul>
    <samp id="4uiq6"></samp>

    平面

    是棱的中點            

    平面

    平面平面

    (2)  

    同理

          

      

    ,       

    ,,    

     

    19.(本小題滿分14分)

    解:(1)由……①,得……②

    ②-①得:    

    所以,求得     

    (2),    

                                                         

     

     

    20.(本小題滿分14分)

    解:(1)由題設(shè)知:

    得:

    解得,橢圓的方程為

    (2)

                

    從而將求的最大值轉(zhuǎn)化為求的最大值

    是橢圓上的任一點,設(shè),則有

    ,

    當(dāng)時,取最大值   的最大值為

     

    21.(本小題滿分14分)

    解:(1)由,,得,

    所以,

    (2)由題設(shè)得

    對稱軸方程為

    由于上單調(diào)遞增,則有

    (Ⅰ)當(dāng)時,有

    (Ⅱ)當(dāng)時,

    設(shè)方程的根為,

    ①若,則,有    解得

    ②若,即,有

              

    由①②得

    綜合(Ⅰ), (Ⅱ)有