欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.設(shè)函數(shù)是定義在R上的奇函數(shù).若的最小正周期為3.且. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)是定義在R上的奇函數(shù),若當(dāng)時,,則滿足的取值范圍是(    )

    A.                               B.

    C.                      D.

 

查看答案和解析>>

設(shè)函數(shù)是定義在R上的奇函數(shù),若當(dāng)時,,則滿足的取值范圍是             (    )

    A.                           B.(1,+∞)

    C.                  D.(-1,+∞)

 

查看答案和解析>>

設(shè)函數(shù)是定義在R上的奇函數(shù),若的最小正周期為3,且,    的取值范圍是(    )

 A. B.

 C.     D. 

 

查看答案和解析>>

設(shè)函數(shù)是定義在R上的奇函數(shù),若的最小正周期為3,且,    的取值范圍是(    )

 A. B.

 C.     D. 

 

查看答案和解析>>

設(shè)函數(shù)是定義在R上的奇函數(shù),若的最小正周期為3,且,    的取值范圍是      

 

查看答案和解析>>

 

一、選擇題:本題考查基本知識和基本運算,每小題5分,共60分.

20080528

二、填空題:本題考查基本知識和基本運算,每小題4分,共16分.

13.  14.  15.  16.

三、解答題:本大題共6小題,共74分.

17.解:……4分

   (1)由題知…………………………………………………6分

   (2)由(1)的條件下

      

       由,……………………………………………8分

       得的圖象的對稱軸是

       則

       ……………………………………………………10分

       又…………………………………………………12分

18.解:(1)ξ的取值為0、1、2、3、4.

      

       ξ的分布列為

       ξ

0

1

2

3

4

P

       ∴Eξ=+×2+×3+×4=…………………………………………7分

   (2)

       …………………………………9分

       ………………………11分

       的最大值為2.……………………………………………………12分

19.解:由三視圖可知三棱柱A1B1C1ABC為直三棱柱,側(cè)梭長為2,底面是等腰直角三角

形,AC=BC=1.…………2分

                     則C(0,0,0),C1(0,0,2),

                     A(1,0,0),B1(0,1,2),A1(1,0,2)

                     MA1B1中點,

                     …………………………4分

                 (1)

                     ……………………6分

                     ∥面AC1M,又∵B1CAC1M

                     ∴B1C∥面AC1M.…………………………8分

                 (2)設(shè)平面AC1M的一個法向量為

                    

                    

                     …………………………………………………………10分

                    

                     則…………………………12分

              20.解:(1)………………2分

                     的等差中項,

                    

                     解得q=2或(舍去),………………………………………………4分

                     ………………5分

                 (2)由(1)得,

                     當(dāng)n=1時,A1=2,B1=(1+1)2=4,A1<B1;

                     當(dāng)n=2時,A2=6,B2=(2+1)2=9,A2<B2;

                     當(dāng)n=3時,A3=14,B3=(3+1)2=16,A3<B3;

                     當(dāng)n=4時,A4=30,B4=(4+1)2=25,A4>B4;

                     由上可猜想,當(dāng)1≤n≤3時,An<Bn;當(dāng)n≥4時,An>Bn.……………………8分

                     下面用數(shù)學(xué)歸納法給出證明:

                     ①當(dāng)n=4時,已驗證不等式成立.

                     ②假設(shè)n=kk≥4)時,Ak>Bk.成立,即,

                    

                     即當(dāng)n=k+1時不等式也成立,

                     由①②知,當(dāng)

                     綜上,當(dāng)時,An<Bn;當(dāng)

               

               

              21.解:(1)設(shè).

                     由題意得……………………2分

                     ∵m>1,∴軌跡C是中心在坐標(biāo)原點,焦點在x軸上的橢圓(除去x軸上的兩項點),其

              中長軸長為2,短軸長為2.………………………………………………4分

                 (2)當(dāng)m=時,曲線C的方程為

                     由………………6分

                     令

                     此時直線l與曲線C有且只有一個公共點.………………………………8分

                 (3)直線l方程為2x-y+3=0.

                     設(shè)點表示P到點(1,0)的距離,d2表示P到直線x=2的距離,

                     則

                     …………………………10分

                     令

                     則

                     令……………………………………………………12分

                    

                    

                     ∴的最小值等于橢圓的離心率.……………………………………14分

              22.(1)由已知

                    

                    

                     …………………………………………………………2分

                     又當(dāng)a=8時,

                    

                     上單調(diào)遞減.……………………………………………………4分

                 (2)

                    

                     ……………………6分

                    

                    

                    

                    

                    

              ………………………………………………8分

                 (3)設(shè)

                     且

                     由(1)知

                    

                     ∴△ABC為鈍角三角形,且∠B為鈍角.…………………………………………11分

                     若△ABC為等腰三角形,則|AB|=|BC|,

                    

                    

                     此與(2)矛盾,

                     ∴△ABC不可能為等腰三角形.………………………………………………14分