題目列表(包括答案和解析)
已知
的展開(kāi)式中第3項(xiàng)的系數(shù)與第5項(xiàng)的系數(shù)之比為
.
(1)求
的值;(2)求展開(kāi)式中的常數(shù)項(xiàng).
【解析】(1)利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出展開(kāi)式的通項(xiàng),求出展開(kāi)式中第3項(xiàng)與第5項(xiàng)的系數(shù)列出方程求出n的值.
(2)將求出n的值代入通項(xiàng),令x的指數(shù)為0求出r的值,將r的值代入通項(xiàng)求出展開(kāi)式的常數(shù)項(xiàng).
某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
|
零件的個(gè)數(shù)x(個(gè)) |
2 |
3 |
4 |
5 |
|
加工的時(shí)間y(小時(shí)) |
2.5 |
3 |
4 |
4.5 |
(1)在給定的坐標(biāo)系中畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;
![]()
(2)求出y關(guān)于x的線(xiàn)性回歸方程
,并在坐標(biāo)系中畫(huà)出回歸直線(xiàn);
(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?
(注:
)
【解析】第一問(wèn)中利用數(shù)據(jù)描繪出散點(diǎn)圖即可
第二問(wèn)中,由表中數(shù)據(jù)得
=52.5,
=3.5,
=3.5,
=54,∴
=0.7,
=1.05得到回歸方程。
第三問(wèn)中,將x=10代入回歸直線(xiàn)方程,得y=0.7×10+1.05=8.05(小時(shí))得到結(jié)論。
(1)散點(diǎn)圖如下圖.
………………4分
(2)由表中數(shù)據(jù)得
=52.5,
=3.5,
=3.5,
=54,
∴
=…=0.7,
=…=1.05.
∴
=0.7x+1.05.回歸直線(xiàn)如圖中所示.………………8分
(3)將x=10代入回歸直線(xiàn)方程,得y=0.7×10+1.05=8.05(小時(shí)),
∴預(yù)測(cè)加工10個(gè)零件需要8.05小時(shí)
已知函數(shù)
的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線(xiàn)的斜率是
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)
,曲線(xiàn)
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)
時(shí),
,則
。
依題意得:
,即
解得
第二問(wèn)當(dāng)
時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線(xiàn)
上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)
時(shí),
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時(shí),
,令
得![]()
當(dāng)
變化時(shí),
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當(dāng)
時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)
時(shí),
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線(xiàn)
上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無(wú)解,因此
。此時(shí)
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對(duì)于
,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù)
,曲線(xiàn)
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
把函數(shù)
的圖象按向量
平移得到函數(shù)
的圖象.
(1)求函數(shù)
的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問(wèn)中,利用設(shè)
上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入
,便可以得到結(jié)論。第二問(wèn)中,令
,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)
上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令
,……6分
則
……8分
,∴
,∴
在
上單調(diào)遞增.……10分
故
,即![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com