題目列表(包括答案和解析)
如圖,在三棱錐
中,平面
平面
,
,
,
,
為
中點(diǎn).(Ⅰ)求點(diǎn)B到平面
的距離;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一問(wèn)中利用因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,
為
中點(diǎn),所以![]()
而平面
平面
,所以
平面
,再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系得
,
,
,
,
,
,
故平面
的法向量
而
,故點(diǎn)B到平面
的距離![]()
第二問(wèn)中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,
為
中點(diǎn),所以![]()
而平面
平面
,所以
平面
,
再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故點(diǎn)B到平面
的距離![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
如圖(1)一座鋼索結(jié)構(gòu)橋的立柱PC與QD的高度都是60 cm,A,C之間的距離是200 m,B,D間的距離為250 m,C,D間距離為2000 m,P點(diǎn)與A點(diǎn)間、Q點(diǎn)與B點(diǎn)間分別用直線式橋索相連結(jié),立柱PC,QD間可以近似的看作是拋物線式鋼索PEQ相連結(jié),E為頂點(diǎn),與AB距離為10 m,現(xiàn)有一只江鷗從A點(diǎn)沿著鋼索AP,PEQ,QB走向B點(diǎn),試寫(xiě)出從A點(diǎn)走到B點(diǎn)江鷗距離橋面的高度與移動(dòng)的水平距離之間的函數(shù)關(guān)系.
王小明同學(xué)采用先建立直角坐標(biāo)系,再求關(guān)系式的方法,他寫(xiě)道:
如圖(2),以A點(diǎn)為原點(diǎn),橋面AB所在直線為x軸,過(guò)A點(diǎn)且垂直與AB的直線為y軸,建立直角坐標(biāo)系,則A(0,0),C(200,0),P( ),E( ),D(2200,0),Q( ),B(2450,0).請(qǐng)你先把上面沒(méi)有寫(xiě)全的坐標(biāo)補(bǔ)全,然后在王小明同學(xué)已建立的直角坐標(biāo)系下完整地解決本題.
如圖(1)一座鋼索結(jié)構(gòu)橋的立柱PC與QD的高度都是60 cm,A,C之間的距離是200 m,B,D間的距離為250 m,C,D間距離為2000 m,P點(diǎn)與A點(diǎn)間、Q點(diǎn)與B點(diǎn)間分別用直線式橋索相連結(jié),立柱PC,QD間可以近似的看作是拋物線式鋼索PEQ相連結(jié),E為頂點(diǎn),與AB距離為10 m,現(xiàn)有一只江鷗從A點(diǎn)沿著鋼索AP,PEQ,QB走向B點(diǎn),試寫(xiě)出從A點(diǎn)走到B點(diǎn)江鷗距離橋面的高度與移動(dòng)的水平距離之間的函數(shù)關(guān)系.
王小明同學(xué)采用先建立直角坐標(biāo)系,再求關(guān)系式的方法,他寫(xiě)道:
如圖(2),以A點(diǎn)為原點(diǎn),橋面AB所在直線為x軸,過(guò)A點(diǎn)且垂直與AB的直線為y軸,建立直角坐標(biāo)系,則A(0,0),C(200,0),P( ),E( ),D(2200,0),Q( ),B(2450,0).請(qǐng)你先把上面沒(méi)有寫(xiě)全的坐標(biāo)補(bǔ)全,然后在王小明同學(xué)已建立的直角坐標(biāo)系下完整地解決本題.
⊙O1和⊙O2的極坐標(biāo)方程分別為
,
.
⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
⑵求經(jīng)過(guò)⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.
【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡(jiǎn)單的圓冤啊位置關(guān)系的運(yùn)用
(1)中,借助于公式
,
,將極坐標(biāo)方程化為普通方程即可。
(2)中,根據(jù)上一問(wèn)中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(I)
,
,由
得
.所以
.
即
為⊙O1的直角坐標(biāo)方程.
同理
為⊙O2的直角坐標(biāo)方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.
解法二: 由
,兩式相減得-4x-4y=0,即過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為y=-x
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)
時(shí),求證:
;
(Ⅱ)若
邊上有且只有一個(gè)點(diǎn)
,使得
,求此時(shí)二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
………………2分
又
,得證。
第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得![]()
由此知道a=2, 設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當(dāng)
時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
又![]()
………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2,
設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com