欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

易求得.(..)... 查看更多

 

題目列表(包括答案和解析)

甲有一只放有a本《周易》,b本《萬(wàn)年歷》,c本《吳從紀(jì)要》的書(shū)箱,且a+b+c =6 (a,b,cN),乙也有一只放有3本《周易》,2本《萬(wàn)年歷》,1《吳從紀(jì)要》的書(shū)箱,兩人各自從自己的箱子中任取一本書(shū)(由于每本書(shū)厚薄、大小相近,每本書(shū)被抽取出的可能性一樣),規(guī)定:當(dāng)兩本書(shū)同名時(shí)甲將被派出去完成某項(xiàng)任務(wù),否則乙去.

(1) 用a、b、c表示甲去的概率;

(2) 若又規(guī)定:當(dāng)甲取《周易》,《萬(wàn)年歷》,《吳從紀(jì)要》而去的得分分別為1分、2分、3分,否則得0分,求甲得分的期望的最大值及此時(shí)a、b、c的值.

 

查看答案和解析>>

甲有一只放有a本《周易》,b本《萬(wàn)年歷》,c本《吳從紀(jì)要》的書(shū)箱,且a+b+c ="6" (a,b,cN),乙也有一只放有3本《周易》,2本《萬(wàn)年歷》,1《吳從紀(jì)要》的書(shū)箱,兩人各自從自己的箱子中任取一本書(shū)(由于每本書(shū)厚薄、大小相近,每本書(shū)被抽取出的可能性一樣),規(guī)定:當(dāng)兩本書(shū)同名時(shí)甲將被派出去完成某項(xiàng)任務(wù),否則乙去.
(1) 用a、b、c表示甲去的概率;
(2) 若又規(guī)定:當(dāng)甲取《周易》,《萬(wàn)年歷》,《吳從紀(jì)要》而去的得分分別為1分、2分、3分,否則得0分,求甲得分的期望的最大值及此時(shí)a、b、c的值.

查看答案和解析>>

甲有一只放有a本《周易》,b本《萬(wàn)年歷》,c本《吳從紀(jì)要》的書(shū)箱,且a+b+c=6 (a,b,c∈N),乙也有一只放有3本《周易》,2本《萬(wàn)年歷》,1本《吳從紀(jì)要》的書(shū)箱,兩人各自從自己的箱子中任取一本書(shū)(由于每本書(shū)厚薄、大小相近,每本書(shū)被抽取出的可能性一樣),規(guī)定:當(dāng)兩本書(shū)同名時(shí)甲將被派出去完成某項(xiàng)任務(wù),否則乙去.
(1)用a、b、c表示甲去的概率;
(2)若又規(guī)定:當(dāng)甲取《周易》,《萬(wàn)年歷》,《吳從紀(jì)要》而去的得分分別為1分、2分、3分,否則得0分,求甲得分的期望的最大值及此時(shí)a、b、c的值.

查看答案和解析>>

甲有一只放有a本《周易》,b本《萬(wàn)年歷》,c本《吳從紀(jì)要》的書(shū)箱,且a+b+c=6 (a,b,c∈N),乙也有一只放有3本《周易》,2本《萬(wàn)年歷》,1本《吳從紀(jì)要》的書(shū)箱,兩人各自從自己的箱子中任取一本書(shū)(由于每本書(shū)厚薄、大小相近,每本書(shū)被抽取出的可能性一樣),規(guī)定:當(dāng)兩本書(shū)同名時(shí)甲將被派出去完成某項(xiàng)任務(wù),否則乙去.
(1)用a、b、c表示甲去的概率;
(2)若又規(guī)定:當(dāng)甲取《周易》,《萬(wàn)年歷》,《吳從紀(jì)要》而去的得分分別為1分、2分、3分,否則得0分,求甲得分的期望的最大值及此時(shí)a、b、c的值.

查看答案和解析>>

已知直三棱柱中, , , 的交點(diǎn), 若.

(1)求的長(zhǎng);  (2)求點(diǎn)到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問(wèn)中,利用ACCA為正方形, AC=3

第二問(wèn)中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問(wèn)中,利用三垂線(xiàn)定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過(guò)E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線(xiàn)CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點(diǎn)A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿(mǎn)足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案