題目列表(包括答案和解析)
解:因為有負根,所以
在y軸左側有交點,因此![]()
解:因為函數(shù)沒有零點,所以方程
無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)
的分布列。
由下列不等式:
,
,
,
,
,你能得到一個怎樣的一般不等式?并加以證明。
【解析】本試題主要考查了合情推理的數(shù)學思想,關鍵是觀察到表達式的特點,以及運用數(shù)學歸納法證明不等式的重要的數(shù)學思想。
,
,
為常數(shù),離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:![]()
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數(shù))上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內,求實數(shù)
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
第二問中,
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:![]()
借助于根與系數(shù)的關系得到即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
(Ⅱ)設
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:
,
即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
| |||||||||||
【解析】本小題考查直線方程的求法。畫草圖,由對稱性可猜想
。
事實上,由截距式可得直線
,直線
,兩式相減得
,顯然直線AB與CP的交點F滿足此方程,又原點O也滿足此方程,故為所求的直線OF的方程。
答案
。
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com