題目列表(包括答案和解析)
解不等式: ![]()
【解析】本試題主要是考查了分段函數(shù)與絕對值不等式的綜合運用。利用零點分段論 的思想,分為三種情況韜略得到解集即可。也可以利用分段函數(shù)圖像來解得。
解:方法一:零點分段討論:
方法二:數(shù)形結(jié)合法:![]()
如下圖,一條河寬1千米,相距4千米(直線距離)的兩座城市A和B,分別位于河的兩岸(城市A,B與岸的距離忽略不計).現(xiàn)需鋪設(shè)一條電纜連通城市A與B.已知水下電纜的修建費為4萬元/千米,地下電纜的修建費為2萬元/千米,假設(shè)兩岸是平行直線,問:應(yīng)如何鋪設(shè)電纜可使總費用最少?(
=3.873,
=1.732,精確到百米,百元)
某港口水的深度y(米)是時間t(0≤t≤24,單位:時)的函數(shù),記作y=f(t),下面是某日水深的數(shù)據(jù):
經(jīng)長期觀察,y=f(t)的曲線可以近似地看成函數(shù)y=Asinωt+b的圖象.
(1)試根據(jù)以上數(shù)據(jù),求出函數(shù)y=f(t)的近似表達(dá)式.
(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上時認(rèn)為是安全的(船舶?繒r,船底只需不碰海底即可).某船吃水深度(船底離水面的距離)為6.5米.如果該船希望在同一天內(nèi)安全進(jìn)出港,請問,它至多能在港內(nèi)停留多長時間(忽略進(jìn)出港所需的時間)?
如圖,兩鐵路線垂直相交于站A,若已知AB=100公里,甲火車從A站出發(fā),沿AC方向以50公里/小時的速度行駛,同時乙火車以V公里/小時的速度從B站沿BA方向行駛,行駛至A站時即停止(甲車仍繼續(xù)行駛).
(1)求甲、乙兩車的最近距離(兩車的車長忽略不計);
(2)若甲、乙兩車開始行駛到甲、乙兩車相距最近所用時間為t0小時,問V為何值時,t0最大.
| |||||||||||
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com