題目列表(包括答案和解析)
為了了解某市工人開展體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠
(Ⅰ)從A,B,C區(qū)中分別抽取的工廠個數(shù);
(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調(diào)查結(jié)果的對比,計算這2個工廠中至少有1個來自A區(qū)的概率.
【解析】本試題主要考查了統(tǒng)計和概率的綜合運用。
第一問工廠總數(shù)為18+27+18=63,樣本容量與總體中的個體數(shù)比為7/63=1/9…3分
所以從A,B,C三個區(qū)中應(yīng)分別抽取的工廠個數(shù)為2,3,2。
第二問設(shè)A1,A2為在A區(qū)中的抽得的2個工廠,B1,B2,B3為在B區(qū)中抽得的3個工廠,
C1,C2為在C區(qū)中抽得的2個工廠。
這7個工廠中隨機的抽取2個,全部的可能結(jié)果有1/2*7*6=32種。
隨機的抽取的2個工廠至少有一個來自A區(qū)的結(jié)果有A1,A2),A1,B2),A1,B1),
A1,B3)A1,C2),A1,C1), …………9分
同理A2還能給合5種,一共有11種。
所以所求的概率為p=11/21
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將
折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點,證明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因為Q為AE的中點,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二問中,作MN
AE,垂足為N,連接DN
因為AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因為AO
DM ,DM
平面AOE
因為MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中點M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因為Q為AE的中點,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足為N,連接DN
因為AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因為AO
DM ,DM
平面AOE
因為MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值為![]()
兩個盒內(nèi)分別盛著寫有0,1,2,3,4,5六個數(shù)字的六張卡片,若從每盒中各取一張,求所取兩數(shù)之和等于6的概率,現(xiàn)有甲、乙兩人分別給出的一種解法:
甲的解法:因為兩數(shù)之和可有0,1,2,…,10共11種不同的結(jié)果,所以所求概率為
.
乙的解法:從每盒中各取一張卡片,共有36種取法,其中和為6的情況有5種:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)因此所求概率為
.
試問哪一種解法正確?為什么?
如圖,在四棱錐 中,底面 是邊長為1的菱形, , 底面 , , 為 的中點.
(Ⅰ)求異面直線AB與MD所成角的大。
(Ⅱ)求平面 與平面 所成的二面角的余弦值.
| 3 | 16 |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com