題目列表(包括答案和解析)
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若不等式
對(duì)任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價(jià)于
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對(duì)任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時(shí),
,成立.
假設(shè)當(dāng)
時(shí),不等式
成立,
當(dāng)
時(shí),
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對(duì)任意
,不等式
恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項(xiàng)公式
, …………10分
, …………12分
所以對(duì)
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
| 用Sm表示S2m | S2m=2Sm+m2d | ||||
| 用Sm1、Sm2表示Sm1+m2 | Sm1+m2= Sm1+Sm2+m1m2d Sm1+Sm2+m1m2d ① | ||||
| 用Sm表示Snm | Snm= nSm+
nSm+ ②
|
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(理)對(duì)于數(shù)列
,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù)
,公比為正整數(shù)
的無(wú)窮等比數(shù)列
的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng)
.
(1) 若
成等比數(shù)列,求
之間滿足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列
中存在一個(gè)子數(shù)列
是等差數(shù)列”,為此,他研究了
與
的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù)
,公差為正整數(shù)
的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫出一個(gè)正確命題,并加以證明.
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對(duì)于數(shù)列
,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為
,公差為
的無(wú)窮等差數(shù)列
的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng)
,第三項(xiàng)
和第五項(xiàng)
.
(1) 若
成等比數(shù)列,求
的值;
(2) 在
,
的無(wú)窮等差數(shù)列
中,是否存在無(wú)窮子數(shù)列
,使得數(shù)列
為等比數(shù)列?若存在,請(qǐng)給出數(shù)列
的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;
(3) 他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)
,公比為正整數(shù)
(
)的無(wú)窮等比數(shù) 列
,總可以找到一個(gè)子數(shù)列
,使得
構(gòu)成等差數(shù)列”. 于是,他在數(shù)列
中任取三項(xiàng)
,由
與
的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對(duì)于數(shù)列
,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為
,公差為
的無(wú)窮等差數(shù)列
的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng)
,第三項(xiàng)
和第五項(xiàng)
.
(1) 若
成等比數(shù)列,求
的值;
(2) 在
,
的無(wú)窮等差數(shù)列
中,是否存在無(wú)窮子數(shù)列
,使得數(shù)列
為等比數(shù)列?若存在,請(qǐng)給出數(shù)列
的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;
(3) 他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)
,公比為正整數(shù)
(
)的無(wú)窮等比數(shù) 列
,總可以找到一個(gè)子數(shù)列
,使得
構(gòu)成等差數(shù)列”. 于是,他在數(shù)列
中任取三項(xiàng)
,由
與
的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com