欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

所以這就是說.當(dāng)n=k+1時結(jié)論也正確由1°,2°可知an<2對n∈N*恒成立.從而②得證. 查看更多

 

題目列表(包括答案和解析)

用數(shù)學(xué)歸納法證明“
n2+n
<n+1 (n∈N*)”.第二步證n=k+1時(n=1已驗證,n=k已假設(shè)成立),這樣證明:
(k+1)2+(k+1)
=
k2+3k+2
k2+4k+4
=(k+1)+1,所以當(dāng)n=k+1時,命題正確.此種證法( 。

查看答案和解析>>

對于不等式≤n+1(n∈N+),某學(xué)生的證明過程如下:

(1)當(dāng)n=1時,≤1+1,不等式成立.

(2)假設(shè)n=k(k∈N+)時,不等式成立,即<k+1,則n=k+1時,

=(k+1)+1.

所以當(dāng)n=k+1時,不等式成立.

上述證法(    )

A.過程全部正確

B.n=1驗得不正確

C.歸納假設(shè)不正確

D.從n=k到n=k+1的推理不正確

查看答案和解析>>

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

對于不等式<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:

(1)當(dāng)n=1時,<1+1,不等式成立.

(2)假設(shè)當(dāng)nk(k∈N*k≥1)時,不等式成立,即<k+1,則當(dāng)nk+1時,<=(k+1)+1,

所以當(dāng)nk+1時,不等式成立,則上述證法                    (  ).

A.過程全部正確

B.n=1驗得不正確

C.歸納假設(shè)不正確

D.從nknk+1的推理不正確

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當(dāng)x變化時,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

,得

①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

當(dāng)時,

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>


同步練習(xí)冊答案