題目列表(包括答案和解析)
設(shè)A是如下形式的2行3列的數(shù)表,
|
a |
b |
c |
|
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f
,且a+b+c+d+e+f=0
記
為A的第i行各數(shù)之和(i=1,2),
為A的第j列各數(shù)之和(j=1,2,3)記
為
中的最小值。
(1)對(duì)如下表A,求
的值
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A形如
|
1 |
1 |
-1-2d |
|
d |
d |
-1 |
其中
,求
的最大值
(3)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求
的最大值。
【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image007.png">,
,所以![]()
(2)
,![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image006.png">,所以
,![]()
所以![]()
當(dāng)d=0時(shí),
取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
|
a |
b |
c |
|
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個(gè)數(shù)換成它的相反數(shù),所得數(shù)表
仍滿足性質(zhì)P,并且
,因此,不妨設(shè)
,
,![]()
由
得定義知,
,
,
,
從而![]()
![]()
所以,
,由(2)知,存在滿足性質(zhì)P的數(shù)表A使
,故
的最大值為1
【考點(diǎn)定位】此題作為壓軸題難度較大,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,考查學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對(duì)任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問(wèn)中,若對(duì)任意
不等式
恒成立,問(wèn)題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對(duì)任意
不等式
恒成立,
問(wèn)題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問(wèn)題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
在復(fù)平面內(nèi),
是原點(diǎn),向量
對(duì)應(yīng)的復(fù)數(shù)是
,
=2+i。
(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量
對(duì)應(yīng)的復(fù)數(shù)
和
;
(Ⅱ)復(fù)數(shù)
,
對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。
【解析】第一問(wèn)中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=![]()
第二問(wèn)中,由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,
為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i 3分
∵
(2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。 2分
證明:由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,
為半徑的圓上
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com