題目列表(包括答案和解析)
| 該種產品的市場前景無法確定,有三種可能出現的情況,各種情形發(fā)生的概率及產品價格p與產量q的函數關系式如下表所示: | ||||||||||||
| ||||||||||||
| (1)分別求利潤L1,L2,L3與產量q的函數關系式; (2)當產量q確定時,求期望Eξk; (3)試問產量q取何值時,Eξk取得最大值。 |
某企業(yè)準備投產一種新產品,經測算,已知每年生產
萬件的該種產品所需要的總成本為
萬元,市場銷售情況可能出現好、中、差三種情況,各種情況發(fā)生的概率和相應的價格p(元)與年產量x之間的函數關系如下表所示.
| 市場情況 | 概率 | 價格p與產量x的函數關系式 |
| 好 | 0.3 |
|
| 中 | 0.5 |
|
| 差 | 0.2 |
|
設L1、L2、L3分別表示市場情況好、中、差時的利潤,隨機變量ξx表示當年產量為x而市場情況不確定時的利潤.
(1)分別求利潤L1、L2、L3與年產量x之間的函數關系式;
(2)當產量x確定時,求隨機變量ξx的期望Eξx;
(3)求年產量x為何值時,隨機變量ξx的期望Eξx取得最大值(不需求最大值).
| 市場情況 | 概率 | 價格p與產量x的函數關系式 |
| 好 | 0.3 | |
| 中 | 0.5 | |
| 差 | 0.2 |
(08年濰坊市質檢)(14分)已知向量m=(a,-x),n=(ln(1+ex),a+1),
= m?n,
且
在x=1處取得極值.
(1)求a的值,并判斷
的單調性;
(2)當
;
(3)設△ABC的三個頂點A、B、C都在
圖象上,橫坐標依次成等差數列,證明:△ABC為鈍角三角形,并判斷是否可能是等腰三角形,說明理由.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com