題目列表(包括答案和解析)
已知函數(shù)
f(x)=x3-3ax2-9a2x+a3.(1)設a=1,求函數(shù)f(x)的極值;
(2)若a>
,且當x∈[1,4a]時,|
|≤12a恒成立,試確定a的取值范圍.
1,則|
|=12a2>12a.故當x∈[1,4a]時|
|≤12a不恒成立.
所以使|
|≤12a(x∈[1,4a])恒成立的a的取值范圍是(
,
].
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線
經(jīng)過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
已知曲線C:
(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當
解得
,所以m的取值范圍是![]()
(2)當m=4時,曲線C的方程為
,點A,B的坐標分別為
,
由
,得![]()
因為直線與曲線C交于不同的兩點,所以![]()
即![]()
設點M,N的坐標分別為
,則![]()
![]()
直線BM的方程為
,點G的坐標為![]()
因為直線AN和直線AG的斜率分別為![]()
所以
![]()
![]()
即
,故A,G,N三點共線。
已知
,函數(shù)![]()
(1)當
時,求函數(shù)
在點(1,
)的切線方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個實數(shù)x0,使
>g(xo)成立,求正實數(shù)
的取值范圍。
【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中
,那么當
時,
又
所以函數(shù)
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數(shù)
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數(shù)
的取值范圍是(![]()
,
)
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com