題目列表(包括答案和解析)
| 2 |
| 3 |
| 3 |
| 4 |
解:因為有負(fù)根,所以
在y軸左側(cè)有交點,因此![]()
解:因為函數(shù)沒有零點,所以方程
無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)
的分布列。
已知數(shù)列
是首項為
的等比數(shù)列,且滿足![]()
.
(1) 求常數(shù)
的值和數(shù)列
的通項公式;
(2) 若抽去數(shù)列
中的第一項、第四項、第七項、……、第
項、……,余下的項按原來的順序組成一個新的數(shù)列
,試寫出數(shù)列
的通項公式;
(3) 在(2)的條件下,設(shè)數(shù)列
的前
項和為
.是否存在正整數(shù)
,使得
?若存在,試求所有滿足條件的正整數(shù)
的值;若不存在,請說明理由.
【解析】第一問中解:由
得
,,
又因為存在常數(shù)p使得數(shù)列
為等比數(shù)列,
則
即
,所以p=1
故數(shù)列
為首項是2,公比為2的等比數(shù)列,即
.
此時
也滿足,則所求常數(shù)
的值為1且![]()
第二問中,解:由等比數(shù)列的性質(zhì)得:
(i)當(dāng)
時,
;
(ii) 當(dāng)
時,
,
所以![]()
第三問假設(shè)存在正整數(shù)n滿足條件,則
,
則(i)當(dāng)
時,
![]()
,
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com