題目列表(包括答案和解析)
解:因為有負根,所以
在y軸左側有交點,因此![]()
解:因為函數(shù)沒有零點,所以方程
無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)
的分布列。
| OM |
| OA |
| ON |
| OB |
| x |
| x+1 |
| x |
| x+1 |
| 1 |
| f(x) |
| 1 |
| 2 |
| OP |
| OP1 |
| OP2 |
| OPn |
| OP |
| OQ |
| 1 |
| 2 |
在復平面內,
是原點,向量
對應的復數(shù)是
,
=2+i。
(Ⅰ)如果點A關于實軸的對稱點為點B,求向量
對應的復數(shù)
和
;
(Ⅱ)復數(shù)
,
對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。
【解析】第一問中利用復數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=![]()
第二問中,由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,
為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i 3分
∵
(2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,
為半徑的圓上
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com