題目列表(包括答案和解析)
已知橢圓![]()
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(I)求橢圓
的方程;
(II)若過(guò)點(diǎn)
(2,0)的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn)),當(dāng)
<
時(shí),求實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問(wèn)中,利用![]()
第二問(wèn)中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中
,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
![]()
設(shè)橢圓
的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對(duì)如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以
,
于是
,
,
![]()
所以
,當(dāng)
,且
時(shí),
取得最大值1。
(3)對(duì)于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">
所以![]()
![]()
![]()
所以,![]()
對(duì)數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對(duì)于所有的
,
的最大值為![]()
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若不等式
對(duì)任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價(jià)于
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對(duì)任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時(shí),
,成立.
假設(shè)當(dāng)
時(shí),不等式
成立,
當(dāng)
時(shí),
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對(duì)任意
,不等式
恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項(xiàng)公式
, …………10分
, …………12分
所以對(duì)
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com