題目列表(包括答案和解析)
(本小題滿分6分)
已知函數(shù)
,( a>0 ,a≠1,a為常數(shù))
(1).當(dāng)a=2時(shí),求f(x)的定義域;
(2).當(dāng)a>1時(shí),判斷函數(shù)
在區(qū)間
上的單調(diào)性;
(3).當(dāng)a>1時(shí),若f(x)在
上恒取正值,求a應(yīng)滿足的條件。
設(shè)
關(guān)于
的不等式,
的解集是
,
函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141297963521422_ST.files/image007.png">。若“
或
”為真,“
且
”為假,求
的取值范圍。
【解析】本試題主要考查了命題的真智慧以及不等式的解集的綜合運(yùn)用。利用
若
真則
若
真,則
得
“
或
”為真,“
且
”為假,則
、
一真一假分類討論得到。
若
真則
若
真,則
得
……………………6分
“
或
”為真,“
且
”為假,則
、
一真一假
當(dāng)
真
假時(shí)![]()
………………………………9分
當(dāng)
假
真時(shí)![]()
………………………………12分
的取值范圍為
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問(wèn)中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時(shí),
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點(diǎn)
,
,
當(dāng)
,即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時(shí),同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時(shí),函數(shù)
的圖象恒在直線
下方.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com