題目列表(包括答案和解析)
已知函數(shù)
,數(shù)列
的項(xiàng)滿足:
,(1)試求![]()
(2) 猜想數(shù)列
的通項(xiàng),并利用數(shù)學(xué)歸納法證明.
【解析】第一問中,利用遞推關(guān)系
, ![]()
, ![]()
第二問中,由(1)猜想得:
然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(數(shù)學(xué)歸納法證明)i)
,
,命題成立
ii) 假設(shè)
時(shí),
成立
則
時(shí),![]()
![]()
![]()
綜合i),ii) :
成立
已知集合
,若對(duì)于任意
,存在
,使
得
成立,則稱集合
是“
集合”. 給出下列4個(gè)集合:
①
②![]()
③
④![]()
其中所有“
集合”的序號(hào)是 ( )A.①③ B.①④ C.②④ D.②③④
已知數(shù)列
是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列
的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對(duì)任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時(shí),
滿足
,![]()
,
![]()
第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時(shí),
滿足
,![]()
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列
中的
成等比數(shù)列
若
是不全相等的實(shí)數(shù),求證:
.
證明過程如下:
,
,
,
,
又
不全相等,
以上三式至少有一個(gè)“
”不成立,
將以上三式相加得
,
.
此證法是( )
A.分析法 B.綜合法 C.分析法與綜合法并用 D.反證法
若a,b,c是不全相等的實(shí)數(shù),求證:a2+b2+c2>ab+bc+ca.
證明過程如下:
∵a、b、c∈R,∴a2+b2≥2ab,
b2+c2≥2bc,c2+a2≥2ac,
又∵a,b,c不全相等,
∴以上三式至少有一個(gè)“=”不成立,
∴將以上三式相加得2(a2+b2+c2)>2(ab+bc+ac),
∴a2+b2+c2>ab+bc
+ca.
此證法是( )
(A)分析法 (B)綜合法
(C)分析法與綜合法并用 (D)反證法
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com