題目列表(包括答案和解析)
把函數(shù)
的圖象按向量
平移得到函數(shù)
的圖象.
(1)求函數(shù)
的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)
上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入
,便可以得到結(jié)論。第二問中,令
,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)
上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令
,……6分
則
……8分
,∴
,∴
在
上單調(diào)遞增.……10分
故
,即![]()
設(shè)函數(shù)![]()
(1)當
時,求曲線
處的切線方程;
(2)當
時,求
的極大值和極小值;
(3)若函數(shù)
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍.
【解析】(1)中,先利用
,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導(dǎo)數(shù)的正負確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了
在區(qū)間
導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當
……2分
∴![]()
即
為所求切線方程。………………4分
(2)當![]()
令
………………6分
∴
遞減,在(3,+
)遞增
∴
的極大值為
…………8分
(3)![]()
①若
上單調(diào)遞增!酀M足要求!10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)
的取值范圍是![]()
(滿分10分)已知定義在
上的函數(shù)
其中
為常數(shù)。
(1)若
是函數(shù)
的一個極值點,求
的值;
(2)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍
(滿分10分)已知定義在
上的函數(shù)
其中
為常數(shù)。
(1)若
是函數(shù)
的一個極值點,求
的值;
(2)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍
(滿分10分)已知定義在
上的函數(shù)
其中
為常數(shù)。
(1)若
是函數(shù)
的一個極值點,求
的值;
(2)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍。
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com