題目列表(包括答案和解析)
.在求某些函數(shù)的導數(shù)時,可以先在解析式兩邊取對數(shù),再求導數(shù),這比用一般方法求導數(shù)更為簡單,如求
的導數(shù),可先在兩邊取對數(shù),得
,再在兩邊分別對x求導數(shù),得
即為
,即導數(shù)為
。若根據(jù)上面提供的方法計算函數(shù)
的導數(shù),則
_
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說明理由.
【解析】第一問中取
,則
;
…………1分
對等式兩邊求導,得![]()
取
,則
得到結(jié)論
第二問中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當
時,
;
當
時,
;
當
時,
;
猜想:當
時,
運用數(shù)學歸納法證明即可。
解:⑴取
,則
;
…………1分
對等式兩邊求導,得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當
時,
;
當
時,
;
當
時,
;
…………6分
猜想:當
時,
,下面用數(shù)學歸納法證明:
由上述過程可知,
時結(jié)論成立,
假設(shè)當
時結(jié)論成立,即
,
當
時,![]()
而![]()
∴![]()
即
時結(jié)論也成立,
∴當
時,
成立。
…………11分
綜上得,當
時,
;
當
時,
;
當
時,
| 1 |
| y |
| 1 |
| f(x) |
| 1 |
| f(x) |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
求形如
的函數(shù)的導數(shù),我們常采用以下做法:先兩邊同取自然對數(shù)得:
,再兩邊同時求導得
,于是得到:
,運用此方法求得函數(shù)
的一個單調(diào)遞增區(qū)間是( )
A.
B.
C.
D.![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com