題目列表(包括答案和解析)
已知
.
(1)求
的單調(diào)區(qū)間;
(2)證明:當
時,
恒成立;
(3)任取兩個不相等的正數(shù)
,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
當k
0時,
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當k>0時,
>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 當x變化時,h(x),
的變化情況如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
設G(x)=lnx-
(x
1)
=
=![]()
0,當且僅當x=1時,
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,綜上,當x
1時, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=![]()
∴l(xiāng)nx0 –lnx
>0, ∴x0 >x![]()
小明用下面的方法求出方程
的解,請你仿照他的方法求出下面方程
的解為 ;
|
方程 |
換元法得新方程 |
解新方程 |
檢驗 |
求原方程的解 |
|
|
令 則 |
t=2 |
t =2 > 0 |
所以x=4 |
小明用下面的方法求出方程
的解,請你仿照他的方法求出下面方程
的解為 ;
|
方程 |
換元法得新方程 |
解新方程 |
檢驗 |
求原方程的解 |
|
|
令 則 |
t=2 |
t =2 > 0 |
所以x=4 |
(14分)已知在數(shù)列{an}中,a1=t,a2=t2,其中t>0,x=
是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1 (n≥2)的一個極值點(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)當
時,令
,數(shù)列
前
項的和為
,求證:![]()
![]()
(Ⅲ)設
,數(shù)列
前
項的和為
,
求同時滿足下列兩個條件的
的值:(1)
(2)對于任意的
,均存在
,當
時,![]()
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com