題目列表(包括答案和解析)
在平面直角坐標(biāo)系
中,曲線
與坐標(biāo)軸的交點(diǎn)都在圓
上.
(1)求圓
的方程;
(2)若圓
與直線
交于
、
兩點(diǎn),且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用。
(1)曲線
與
軸的交點(diǎn)為(0,1),
與
軸的交點(diǎn)為(3+2
,0),(3-2
,0) 故可設(shè)
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因?yàn)閳A
與直線
交于
、
兩點(diǎn),且
。聯(lián)立方程組得到結(jié)論。
求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r=
=
,
故所求圓的方程為:
+
=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圓的方程為:
+
=2
………………………12分
法二:由條件設(shè)所求圓的方程為:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圓的方程為:
+
=2
………………………12分
其它方法相應(yīng)給分
.給出下列命題:
①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無實(shí)根”的否命題;
②命題在“△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題;
③命題“若a>b>0,則
>
>0”的逆否命題;
④若“m>1,則mx2-2(m+1)x+(m-3)>0的解集為R”的逆命題.
其中真命題的序號為________.
如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為
的半圓形空地,
外的地方種草,
的內(nèi)接正方形
為一水池,其余地方種花.若
,設(shè)
的面積為
,正方形
的面積為
,將比值
稱為“規(guī)劃合理度”.
(1)試用
,
表示
和
.
(2)當(dāng)
為定值,
變化時(shí),求“規(guī)劃合理度”取得最小值時(shí)的角
的大小.
![]()
【解析】第一問中利用在![]()
ABC中
,
=
設(shè)正方形的邊長為
則 ![]()
然后解得
第二問中,利用
而
=![]()
借助于
為減函數(shù)
得到結(jié)論。
(1)、 如圖,在![]()
ABC中
,
=
設(shè)正方形的邊長為
則 ![]()
=
![]()
(2)、
而
=
∵0 <
<
,又0 <2
<
,
0<t£1
為減函數(shù)
當(dāng)
時(shí)
取得最小值為
此時(shí)
已知直線x+y-3m=0和2x-y+2m-1=0的交點(diǎn)M在第四象限,求實(shí)數(shù)m的取值范圍.
[分析] 解方程組得交點(diǎn)坐標(biāo),再根據(jù)點(diǎn)M在第四象限列出不等式組,解得m的取值范圍.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com