題目列表(包括答案和解析)
若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說(shuō)明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)中,利用定義,判定由題意得
,由
,所以![]()
第二問(wèn)中, 由題意得方程
有兩實(shí)根
設(shè)
所以關(guān)于m的方程
在
有兩實(shí)根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個(gè)不同交點(diǎn),從而得到t的范圍。
解(I)由題意得
,由
,所以
(6分)
(II)由題意得方程
有兩實(shí)根
設(shè)
所以關(guān)于m的方程
在
有兩實(shí)根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個(gè)不同交點(diǎn)。
![]()
已知函數(shù)f(x)=
sin(ωx+φ)
(0<φ<π,ω>0)過(guò)點(diǎn)
,函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移
個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.
【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運(yùn)用,第一問(wèn)中利用函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
.得
,
所以![]()
第二問(wèn)中,![]()
![]()
,
![]()
可以得到單調(diào)區(qū)間。
解:(Ⅰ)由題意得
,
,…………………1分
代入點(diǎn)
,得
…………1分
,
∴![]()
(Ⅱ)
,![]()
![]()
的單調(diào)遞減區(qū)間為
,
.
△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長(zhǎng)及△ABC的面積。
![]()
【解析】本試題主要考查了余弦定理的運(yùn)用。利用由題意得
,![]()
![]()
,
并且
有
得到結(jié)論。
解:(Ⅰ)由題意得
,![]()
………1分
…………1分
(Ⅱ)
………………1分
![]()
![]()
![]()
設(shè)函數(shù)f(x)=lnx,g(x)=ax+
,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,g(x)=ax+![]()
則其導(dǎo)數(shù)為![]()
由題意得,![]()
第二問(wèn),由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)
時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+![]()
則其導(dǎo)數(shù)為![]()
由題意得,![]()
(11)由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)
時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有![]()
在復(fù)平面內(nèi),
是原點(diǎn),向量
對(duì)應(yīng)的復(fù)數(shù)是
,
=2+i。
(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量
對(duì)應(yīng)的復(fù)數(shù)
和
;
(Ⅱ)復(fù)數(shù)
,
對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。
【解析】第一問(wèn)中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=![]()
第二問(wèn)中,由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,
為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i 3分
∵
(2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。 2分
證明:由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,
為半徑的圓上
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com