題目列表(包括答案和解析)
已知
.
(1)求
的單調(diào)區(qū)間;
(2)證明:當
時,
恒成立;
(3)任取兩個不相等的正數(shù)
,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
當k
0時,
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當k>0時,
>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 當x變化時,h(x),
的變化情況如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
設G(x)=lnx-
(x
1)
=
=![]()
0,當且僅當x=1時,
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,綜上,當x
1時, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=![]()
∴l(xiāng)nx0 –lnx
>0, ∴x0 >x![]()
解:∵x+y=1(x>0,y>0),∴令x=cos2θ,y=sin2θ(其中①___________;②____________),則
+
=1cos2θ+
=tan2θ+2cot2θ+3≥3+
,則當③____________時,
+
取得最小值3+
(注意:①指出運用了什么數(shù)學方法;②指出θ的一個取值范圍;③指出x,y的取值).
已知函數(shù)
,
(Ⅰ)求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)令函數(shù)
(
),求函數(shù)
的最大值的表達式
;
【解析】第一問中利用令
,
,
∴
,![]()
第二問中,
=![]()
=![]()
=
令
,
,則
借助于二次函數(shù)分類討論得到最值。
(Ⅰ)解:令
,
,
∴
,![]()
∴
的單調(diào)遞減區(qū)間為:![]()
…………………4分
(Ⅱ)解:
=![]()
=![]()
=![]()
令
,
,則
……………………4分
對稱軸![]()
① 當
即
時,
=
……………1分
② 當
即
時,
=
……………1分
③ 當
即
時,
……………1分
綜上:![]()
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知
+2
=11,∴m+2n=11,x2的系數(shù)為
+22
=
+2n(n-1)=
+(11-m)(
-1)=(m-
)2+
.
∵m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當x2的系數(shù)取得最小值時,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+
33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com