題目列表(包括答案和解析)
(本題滿分12分)探究函數(shù)
,
的最小值,并確定取得最小值時(shí)
的值,列表如下:
|
|
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
請(qǐng)觀察表中
值隨
值變化的特點(diǎn),完成下列問題:
(1) 當(dāng)
時(shí),
在區(qū)間
上遞減,在區(qū)間 上遞增;
所以,
=
時(shí),
取到最小值為
;
(2) 由此可推斷,當(dāng)
時(shí),
有最
值為 ,此時(shí)
=
;
(3) 證明: 函數(shù)
在區(qū)間
上遞減;
(4) 若方程
在
內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍。
(本題滿分12分)探究函數(shù)
,
的最小值,并確定取得最小值時(shí)
的值,列表如下:
|
| … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
|
| … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請(qǐng)觀察表中
值隨
值變化的特點(diǎn),完成下列問題:
(1) 當(dāng)
時(shí),
在區(qū)間
上遞減,在區(qū)間 上遞增;
所以,
= 時(shí),
取到最小值為 ;
(2) 由此可推斷,當(dāng)
時(shí),
有最 值為 ,此時(shí)
= ;
(3) 證明: 函數(shù)
在區(qū)間
上遞減;
(4) 若方程
在
內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍。
| … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
| … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
設(shè)函數(shù)![]()
(1)當(dāng)
時(shí),求曲線
處的切線方程;
(2)當(dāng)
時(shí),求
的極大值和極小值;
(3)若函數(shù)
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
【解析】(1)中,先利用
,表示出點(diǎn)
的斜率值
這樣可以得到切線方程。(2)中,當(dāng)
,再令
,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了
在區(qū)間
導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)
……2分
∴![]()
即
為所求切線方程!4分
(2)當(dāng)![]()
令
………………6分
∴
遞減,在(3,+
)遞增
∴
的極大值為
…………8分
(3)![]()
①若
上單調(diào)遞增!酀M足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)
的取值范圍是![]()
已知函數(shù)![]()
(1)若函數(shù)
的圖象經(jīng)過P(3,4)點(diǎn),求a的值;
(2)比較
大小,并寫出比較過程;
(3)若
,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)
的圖象經(jīng)過P(3,4)點(diǎn),所以
,解得
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以
.
(2)問中,對(duì)底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。
(3)中,由
知,
.,指對(duì)數(shù)互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數(shù)
的圖象經(jīng)過
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵當(dāng)
時(shí),
;
當(dāng)
時(shí),
. ……………… 6分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,![]()
當(dāng)
時(shí),
在
上為增函數(shù),∵
,∴
.
即
.當(dāng)
時(shí),
在
上為減函數(shù),
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com