題目列表(包括答案和解析)
函數(shù)
(1)f(x)
的最小正周期;(2)f(x)=0
時x的取值集合;(3)
使f(x)<0的x的取值集合;(4)f(x)
的單調(diào)遞增區(qū)間和遞減區(qū)間;(5)
使f(x)取最小值的x的取值集合;(6)
圖象的對稱軸方程;(7)
圖象的對稱中心;(8)
要使f(x)成為偶函數(shù),就對f(x)的圖象作怎樣的平移變換.函數(shù)
的圖象如圖所示,試依圖推出:
(1)f(x)的最小正周期;
(2)f(x)=0時x的取值集合;
(3)使f(x)<0的x的取值集合;
(4)f(x)的單調(diào)遞增區(qū)間和遞減區(qū)間;
(5)使f(x)取最小值的x的取值集合;
(6)圖象的對稱軸方程;
(7)圖象的對稱中心;
(8)要使f(x)成為偶函數(shù),就對f(x)的圖象作怎樣的平移變換.
已知函數(shù)
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結合導數(shù)和函數(shù)之間的關系得到單調(diào)性的判定,得到極值和最值
第三問假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調(diào)遞增!
在
最大值為
。
綜上,當
時,即
時,
在區(qū)間
上的最大值為2;
當
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
設函數(shù)
.
(Ⅰ) 當
時,求
的單調(diào)區(qū)間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問中利用函數(shù)
的定義域為(0,2),
.
當a=1時,
所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
第二問中,利用當
時,
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)
的定義域為(0,2),
.
(1)當
時,
所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
(2)當
時,
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com