題目列表(包括答案和解析)
已知函數(shù)
其中
為自然對(duì)數(shù)的底數(shù),
.(Ⅰ)設(shè)
,求函數(shù)
的最值;(Ⅱ)若對(duì)于任意的
,都有
成立,求
的取值范圍.
【解析】第一問(wèn)中,當(dāng)
時(shí),
,
.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。
第二問(wèn)中,∵
,
,
∴原不等式等價(jià)于:
,
即
, 亦即![]()
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)
時(shí),
,
.
當(dāng)
在
上變化時(shí),
,
的變化情況如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
時(shí),
,
.
(Ⅱ)∵
,
,
∴原不等式等價(jià)于:
,
即
, 亦即
.
∴對(duì)于任意的
,原不等式恒成立,等價(jià)于
對(duì)
恒成立,
∵對(duì)于任意的
時(shí),
(當(dāng)且僅當(dāng)
時(shí)取等號(hào)).
∴只需
,即
,解之得
或
.
因此,
的取值范圍是![]()
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若不等式
對(duì)任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價(jià)于
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對(duì)任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時(shí),
,成立.
假設(shè)當(dāng)
時(shí),不等式
成立,
當(dāng)
時(shí),
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對(duì)任意
,不等式
恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項(xiàng)公式
, …………10分
, …………12分
所以對(duì)
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
給出問(wèn)題:已知
滿足
,試判定
的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
![]()
,
![]()
,
故
是直角三角形.
(ii)設(shè)
外接圓半徑為
.由正弦定理可得,原式等價(jià)于![]()
![]()
,
故
是等腰三角形.
綜上可知,
是等腰直角三角形.
請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出你認(rèn)為本題正確的結(jié)果. .
| b2+c2-a2 |
| 2bc |
| a2+c2-b2 |
| 2ac |
若
,則不等式
等價(jià)于( )
A.
或
B.![]()
C.
或
D.
或![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com