題目列表(包括答案和解析)
已知函數(shù)
其中
為自然對數(shù)的底數(shù),
.(Ⅰ)設(shè)
,求函數(shù)
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當(dāng)
時,
,
.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進(jìn)而得到最值。
第二問中,∵
,
,
∴原不等式等價于:
,
即
, 亦即![]()
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)
時,
,
.
當(dāng)
在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
時,
,
.
(Ⅱ)∵
,
,
∴原不等式等價于:
,
即
, 亦即
.
∴對于任意的
,原不等式恒成立,等價于
對
恒成立,
∵對于任意的
時,
(當(dāng)且僅當(dāng)
時取等號).
∴只需
,即
,解之得
或
.
因此,
的取值范圍是![]()
已知函數(shù)
,
(1)求函數(shù)
的定義域;
(2)求函數(shù)
在區(qū)間
上的最小值;
(3)已知
,命題p:關(guān)于x的不等式
對函數(shù)
的定義域上的任意
恒成立;命題q:指數(shù)函數(shù)
是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
【解析】第一問中,利用由
即![]()
![]()
第二問中,
,
得:
![]()
,
![]()
第三問中,由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時等號成立。當(dāng)命題p為真時,
;而命題q為真時:指數(shù)函數(shù)
.因為“p或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時等號成立。當(dāng)命題p為真時,
;而命題q為真時:指數(shù)函數(shù)
.因為“p或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時,![]()
當(dāng)命題p為假,命題q為真時,
,
所以![]()
已知函數(shù)![]()
;
(1)若函數(shù)
在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)
的取值范圍。
(2)若函數(shù)
,若在[1,e]上至少存在一個x的值使
成立,求實數(shù)
的取值范圍。
【解析】第一問中,利用導(dǎo)數(shù)
,因為
在其定義域內(nèi)的單調(diào)遞增函數(shù),所以
內(nèi)滿足
恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。
解:(1)
,
因為
在其定義域內(nèi)的單調(diào)遞增函數(shù),
所以
內(nèi)滿足
恒成立,即
恒成立,
亦即
,
即可 又![]()
當(dāng)且僅當(dāng)
,即x=1時取等號,
在其定義域內(nèi)為單調(diào)增函數(shù)的實數(shù)k的取值范圍是
.
(2)在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,設(shè)![]()
上的增函數(shù),
依題意需![]()
實數(shù)k的取值范圍是![]()
一段長為32米的籬笆圍成一個一邊靠墻的矩形菜園,墻長18米,問這個矩形的長、寬各為多少時,菜園的面積最大,最大面積是多少?
【解析】解:令矩形與墻垂直的兩邊為寬并設(shè)矩形寬為
,則長為![]()
所以矩形的面積
(
) (4分
=128 (8分)
當(dāng)且僅當(dāng)
時,即
時等號成立,此時
有最大值128
所以當(dāng)矩形的長為
=16,寬為8時,
菜園面積最大,最大面積為128 (13分)答:當(dāng)矩形的長為16米,寬為8米時。菜園面積最大,最大面積為128平方米(注:也可用二次函數(shù)模型解答)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com