題目列表(包括答案和解析)
在
中,已知
,面積
,
(1)求
的三邊的長;
(2)設(shè)
是
(含邊界)內(nèi)的一點(diǎn),
到三邊
的距離分別是![]()
①寫出
所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識(shí)求出
的取值范圍.
【解析】第一問中利用設(shè)
中角
所對(duì)邊分別為![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三邊長![]()
![]()
第二問中,①
得
![]()
故![]()
②![]()
令
依題意有![]()
作圖,然后結(jié)合區(qū)域得到最值。
![]()
在
中,
是三角形的三內(nèi)角,
是三內(nèi)角對(duì)應(yīng)的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角
的大。
(Ⅱ)若
,求
的值.
【解析】第一問中利用依題意
且
,故![]()
第二問中,由題意
又由余弦定理知
![]()
,得到
,所以
,從而得到結(jié)論。
(1)依題意
且
,故
……………………6分
(2)由題意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
已知數(shù)列
的前
項(xiàng)和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項(xiàng)公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用
關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時(shí),由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對(duì)偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時(shí),
,命題成立;
②假設(shè)
時(shí),命題成立,即
,
則當(dāng)
時(shí),![]()
![]()
即![]()
即![]()
故當(dāng)
時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
已知函數(shù)
(
為實(shí)數(shù)).
(Ⅰ)當(dāng)
時(shí),求
的最小值;
(Ⅱ)若
在
上是單調(diào)函數(shù),求
的取值范圍.
【解析】第一問中由題意可知:
. ∵
∴
∴![]()
.
當(dāng)
時(shí),
;
當(dāng)
時(shí),
. 故
.
第二問![]()
.
當(dāng)
時(shí),
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.轉(zhuǎn)化后解決最值即可。
解:(Ⅰ) 由題意可知:
. ∵
∴
∴![]()
.
當(dāng)
時(shí),
;
當(dāng)
時(shí),
. 故
.
(Ⅱ) ![]()
.
當(dāng)
時(shí),
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.∵二次函數(shù)
的對(duì)稱軸為
,且![]()
∴
或![]()
或![]()
或![]()
或
. 綜上![]()
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對(duì)任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問中,若對(duì)任意
不等式
恒成立,問題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對(duì)任意
不等式
恒成立,
問題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com