題目列表(包括答案和解析)
已知數(shù)列
是首項(xiàng)為
的等比數(shù)列,且滿足![]()
.
(1) 求常數(shù)
的值和數(shù)列
的通項(xiàng)公式;
(2) 若抽去數(shù)列
中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第
項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列
,試寫出數(shù)列
的通項(xiàng)公式;
(3) 在(2)的條件下,設(shè)數(shù)列
的前
項(xiàng)和為
.是否存在正整數(shù)
,使得
?若存在,試求所有滿足條件的正整數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)中解:由
得
,,
又因?yàn)榇嬖诔?shù)p使得數(shù)列
為等比數(shù)列,
則
即
,所以p=1
故數(shù)列
為首項(xiàng)是2,公比為2的等比數(shù)列,即
.
此時(shí)
也滿足,則所求常數(shù)
的值為1且![]()
第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:
(i)當(dāng)
時(shí),
;
(ii) 當(dāng)
時(shí),
,
所以![]()
第三問(wèn)假設(shè)存在正整數(shù)n滿足條件,則
,
則(i)當(dāng)
時(shí),
![]()
,
歐拉(Euler),瑞士數(shù)學(xué)家及自然科學(xué)家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國(guó)彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位.
歐拉是18世紀(jì)數(shù)學(xué)界最杰出的人物之一,他不但為數(shù)學(xué)界做出了巨大的貢獻(xiàn),更把數(shù)學(xué)推至幾乎整個(gè)物理的領(lǐng)域.他是數(shù)學(xué)史上最多產(chǎn)的數(shù)學(xué)家,平均每年寫出八百多頁(yè)的論文,還寫了大量的力學(xué)、分析學(xué)、幾何學(xué)、變分法等的課本,《無(wú)窮小分析引論》、《微分學(xué)原理》、《積分學(xué)原理》等都成為數(shù)學(xué)中的經(jīng)典著作.
歐拉對(duì)數(shù)學(xué)符號(hào)的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對(duì)數(shù)的底,用i表示-1,用f(x)作為函數(shù)的符號(hào),π雖不是歐拉首先提出的,但是在歐拉倡導(dǎo)下推廣普及的.尤為不可思議的是歐拉將數(shù)學(xué)中最為活躍的五個(gè)數(shù)1,0,π,e,i竟用一個(gè)美妙絕倫的公式聯(lián)系了起來(lái):eiπ+1=0(歐拉指數(shù)公式),在西方數(shù)學(xué)界甚至認(rèn)為此公式不亞于神的力量.
歐拉對(duì)數(shù)學(xué)的研究如此廣泛,因此在許多數(shù)學(xué)的分支中也可經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理.
1.你對(duì)歐拉(Euler)了解嗎?請(qǐng)查閱歐拉(Euler)的故事,對(duì)于他“13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位”,你有何感觸?
2.作為新時(shí)代的青年,你做好將來(lái)為科學(xué)事業(yè)做貢獻(xiàn)的思想準(zhǔn)備了嗎?
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com