欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)實(shí)數(shù)a0.a.b滿足 和 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)的定義域、值域均為R,f(x)的反函數(shù)為f-1(x),且對任意實(shí)數(shù)x,均有數(shù)學(xué)公式,定義數(shù)列an:a0=8,a1=10,an=f(an-1),n=1,2,….
(1)求證:數(shù)學(xué)公式;
(2)設(shè)bn=an+1-2an,n=0,1,2,….求證:數(shù)學(xué)公式(n∈N*);
(3)是否存在常數(shù)A和B,同時(shí)滿足①當(dāng)n=0及n=1時(shí),有數(shù)學(xué)公式成立;②當(dāng)n=2,3,…時(shí),有數(shù)學(xué)公式成立.如果存在滿足上述條件的實(shí)數(shù)A、B,求出A、B的值;如果不存在,證明你的結(jié)論.

查看答案和解析>>

已知函數(shù)滿足下列條件:對任意的實(shí)數(shù)x1,x2都有  ,其中是大于0的常數(shù).設(shè)實(shí)數(shù)a0,a,b滿足 .

       (Ⅰ)證明:,并且不存在,使得;

       (Ⅱ)證明:;

       (Ⅲ)證明:.

查看答案和解析>>

已知函數(shù)滿足下列條件:對任意的實(shí)數(shù)x1x2都有,其中是大于0的常數(shù).

設(shè)實(shí)數(shù)a0a,b滿足 

(Ⅰ)證明,并且不存在,使得;

(Ⅱ)證明

(Ⅲ)證明.

 

查看答案和解析>>

已知函數(shù)滿足下列條件:對任意的實(shí)數(shù)x1,x2都有λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]和|f(x1)-f(x2)|≤|x1-x2|,其中λ是大于0的常數(shù).設(shè)實(shí)數(shù)a0,a,b滿足f(a0)=0和b=a-λf(a)

(Ⅰ)證明λ≤1,并且不存在b0≠a0,使得f(b0)=0;

(Ⅱ)證明(b-a0)2≤(1-λ2)(a-a0)2

(Ⅲ)證明[f(b)]2≤(1-λ2)[f(a)]2

查看答案和解析>>

已知函數(shù)滿足下列條件:對任意的實(shí)數(shù)x1,x2都有,其中是大于0的常數(shù).

設(shè)實(shí)數(shù)a0a,b滿足 

(Ⅰ)證明,并且不存在,使得

(Ⅱ)證明;

(Ⅲ)證明.

 

查看答案和解析>>

 

一、選擇題:本題考查基本知識和基本運(yùn)算,每小題5分,滿分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空題:本題考查基本知識和基本運(yùn)算,每小題4分,滿分16分.

(13)                         (14)

(15)2                                        (16)

三、解答題

(17)本小題主要考查三角函數(shù)的基本公式和三角函數(shù)的恒等變換等基本知識,以及推理能力和運(yùn)算能力.滿分12分.

      解:由已知.

  

      從而 

.

(18)本小題主要考查線面關(guān)系和正方體性質(zhì)等基本知識,考查空間想象能力和推理論證能力.滿分12分.

      解法一:(I)連結(jié)BP.

      ∵AB⊥平面BCC1B1,  ∴AP與平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP為直角,tan∠APB=

      ∴∠APB=

(19)本小題主要考查簡單線性規(guī)劃的基本知識,以及運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力.滿分12分.

      解:設(shè)投資人分別用x萬元、y萬元投資甲、乙兩個(gè)項(xiàng)目.

      由題意知

      目標(biāo)函數(shù)z=x+0.5y.

      上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.

      與可行域相交,其中有一條直線經(jīng)過可行域上的M點(diǎn),且

      與直線的距離最大,這里M點(diǎn)是直線

      和的交點(diǎn).

       解方程組 得x=4,y=6

      此時(shí)(萬元).

          當(dāng)x=4,y=6時(shí)z取得最大值.

      答:投資人用4萬元投資甲項(xiàng)目、6萬元投資乙項(xiàng)目,才能在確保虧損不超過1.8萬元的前提下,使可能的盈利最大.

(20)本小題主要考查數(shù)列的基本知識,以及運(yùn)用數(shù)學(xué)知識分析和解決問題的能力.滿分12分.

      解:(I)當(dāng)時(shí),

             

       由

       即              又.

       (II)設(shè)數(shù)列{an}的公差為d,則在中分別取k=1,2,得

(1)

(2)

       由(1)得

       當(dāng)

       若成立

       若

          故所得數(shù)列不符合題意.

       當(dāng)

       若

       若.

       綜上,共有3個(gè)滿足條件的無窮等差數(shù)列:

       ①{an} : an=0,即0,0,0,…;

       ②{an} : an=1,即1,1,1,…;

       ③{an} : an=2n-1,即1,3,5,…,

(21)本小題主要考查直線、橢圓和向量等基本知識,以及推理能力和運(yùn)算能力.滿分12分.

       解:(I)設(shè)所求橢圓方程是

       由已知,得    所以.

       故所求的橢圓方程是

       (II)設(shè)Q(),直線

       當(dāng)由定比分點(diǎn)坐標(biāo)公式,得

      

       .

       于是   故直線l的斜率是0,.

(22)本小題主要考查函數(shù)、不等式等基本知識,以及綜合運(yùn)用數(shù)學(xué)知識解決問題的能力.滿分14分.

       證明:(I)任取 

       和  ②

       可知 ,

       從而 .  假設(shè)有①式知

      

       ∴不存在

       (II)由                        ③

       可知   ④

       由①式,得   ⑤

       由和②式知,   ⑥

       由⑤、⑥代入④式,得

                          

(III)由③式可知

  (用②式)

       (用①式)