欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

CBABAC PP (C) (D) 第Ⅱ部分 查看更多

 

題目列表(包括答案和解析)

從圓O:x2+y2=4上任意一點P向x軸作垂線,垂足為P′,點M是線段PP′的中點,則點M的軌跡方程是( 。

查看答案和解析>>

已知一個圓的圓心為坐標原點O,半徑為2,從這個圓上任意一點P向x軸作垂線PP′,P′為垂足.
(Ⅰ)求線段PP′中點M的軌跡方程; 
(Ⅱ)已知直線x-y-2=0與M的軌跡相交于A、B兩點,求△OAB的面積.

查看答案和解析>>

設事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產生B的概率為PP′,根據這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現(xiàn)正面則棋子向前跳動一站,出現(xiàn)反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結束.已知硬幣出現(xiàn)正反面的概率都為
12

(1)求P1,P2,P3,并根據棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設an=Pn-Pn-1(1≤n≤100),求證:數列{an}是等比數列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

(2013•重慶)如圖,橢圓的中心為原點O,長軸在x軸上,離心率e=
2
2
,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(Ⅰ)求該橢圓的標準方程;
(Ⅱ)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應的圓Q的標準方程.

查看答案和解析>>

如圖所示,設點P(
3p
,4)
關于x軸的對稱點P′在曲線C:y=-
px
,(x>0)
上,
(I)求實數p的值;
(II)若A,B為曲線C上不同兩點,線段PP′恰好經過△ABP的內心,試問:曲線C在點P′處的切線m是否一定平行于直線AB?請給以證明.

查看答案和解析>>

 

一、選擇題:每小題5分,共60分.

(1)D     (2)A     (3)D      (4)A     (5)B      (6)C 

(7)C     (8)C     (9)B      (10)B    (11)D      (12)D

二、填空題:每小題4分,共16分.

(13)-2   (14)   (15)   (16)[-1,3]

三、解答題:共74分.

(17)(本小題12分)

解:

     

故該函數的最小正周期是;最小值是-2;

單增區(qū)間是[],

(18)(本小題12分)

      解:(I)的所有可能值為0,1,2,3,4

             用AK表示“汽車通過第k個路口時不停(遇綠燈)”,

則P(AK)=獨立.

 

從而有分布列:

 

            0     1       2        3        4

 

    P                          

            

             (II)

             答:停車時最多已通過3個路口的概率為.

  •    (I)證明:因PA⊥底面,有PA⊥AB,又知AB⊥AD,

    故AB⊥面PAD,推得BA⊥AE,

    又AM∥CD∥EF,且AM=EF,

    證得AEFM是矩形,故AM⊥MF.

    又因AE⊥PD,AE⊥CD,故AE⊥面PCD,

    而MF∥AE,得MF⊥面PCD,

    故MF⊥PC,

    因此MF是AB與PC的公垂線.

          (II)解:連結BD交AC于O,連結BE,過O作BE的垂線OH,

            垂足H在BE上.

                   易知PD⊥面MAE,故DE⊥BE,

                   又OH⊥BE,故OH//DE,

                   因此OH⊥面MAE.

                   連結AH,則∠HAO是所要求的線AC與面NAE所成的角 

                   設AB=a,則PA=3a, .

                   因Rt△ADE~Rt△PDA,故

                  

                  

    (20)(本小題12分)

          解:(I)

          

                 因此是極大值點,是極小值點.

                 (II)因

           

                 又由(I)知

                

                 代入前面不等式,兩邊除以(1+a),并化簡得

           

    (21)(本小題12分)

       解法一:由題意,直線AB不能是水平線,  故可設直線方程為:.

       又設,則其坐標滿足

    •       由此得  

           

            因此.

            故O必在圓H的圓周上.

            又由題意圓心H()是AB的中點,故

           

            由前已證,OH應是圓H的半徑,且.

            從而當k=0時,圓H的半徑最小,亦使圓H的面積最小.

            此時,直線AB的方程為:x=2p.

            解法二:由題意,直線AB不能是水平線,故可設直線方程為:ky=x-2p

            又設,則其坐標滿足

         分別消去x,y得

            故得A、B所在圓的方程

            明顯地,O(0,0)滿足上面方程所表示的圓上,

            又知A、B中點H的坐標為

            故

            而前面圓的方程可表示為

            故|OH|為上面圓的半徑R,從而以AB為直徑的圓必過點O(0,0).

            又,

            故當k=0時,R2最小,從而圓的面積最小,此時直線AB的方程為:x=2p.

            解法三:同解法一得O必在圓H的圓周上

            又直徑|AB|=

            上式當時,等號成立,直徑|AB|最小,從而圓面積最小.

            此時直線AB的方程為x=2p.

      (22)(本小題14分)

            (I)證法一:當不等式成立.

                      

                       綜上由數學歸納法可知,對一切正整數成立.

                       證法二:當n=1時,.結論成立.

                       假設n=k時結論成立,即

                       當的單增性和歸納假設有

                      

                       所以當n=k+1時,結論成立.

                       因此,對一切正整數n均成立.

                       證法三:由遞推公式得

                      

                       上述各式相加并化簡得 

                      

            (II)解法一:

              

                       解法二:

      <ul id="iwe6e"></ul>
      • <ul id="iwe6e"><acronym id="iwe6e"></acronym></ul>
        • I

                           解法三:

                                   

                           故.