題目列表(包括答案和解析)
在平面直角坐標(biāo)系
中,曲線
與坐標(biāo)軸的交點(diǎn)都在圓
上.
(1)求圓
的方程;
(2)若圓
與直線
交于
、
兩點(diǎn),且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用。
(1)曲線
與
軸的交點(diǎn)為(0,1),
與
軸的交點(diǎn)為(3+2
,0),(3-2
,0) 故可設(shè)
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因?yàn)閳A
與直線
交于
、
兩點(diǎn),且
。聯(lián)立方程組得到結(jié)論。
如圖,
分別是橢圓
:
+
=1(![]()
)的左、右焦點(diǎn),
是橢圓
的頂點(diǎn),
是直線
與橢圓
的另一個(gè)交點(diǎn),![]()
![]()
=60°.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)已知△![]()
的面積為40
,求
的值.
![]()
【解析】 (Ⅰ)由題![]()
![]()
=60°,則
,即橢圓
的離心率為
。
(Ⅱ)因△![]()
的面積為40
,設(shè)
,又面積公式
,又直線
,
又由(Ⅰ)知
,聯(lián)立方程可得
,整理得
,解得
,
,所以
,解得
。
已知過(guò)點(diǎn)
的動(dòng)直線
與拋物線
相交于
兩點(diǎn).當(dāng)直線
的斜率是
時(shí),
.
(1)求拋物線
的方程;
(2)設(shè)線段
的中垂線在
軸上的截距為
,求
的取值范圍.
【解析】(1)B
,C
,當(dāng)直線
的斜率是
時(shí),
的方程為
,即
(1’)
聯(lián)立
得
,
(3’)
由已知
,
(4’)
由韋達(dá)定理可得
G方程為
(5’)
(2)設(shè)
:
,BC中點(diǎn)坐標(biāo)為
(6’)
得
由
得
(8’)
![]()
BC中垂線為
(10’)
![]()
(11’)
![]()
![]()
設(shè)橢圓E:
(a,b>0)過(guò)M(2,
) ,N(
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且
?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。
設(shè)橢圓E:
(a,b>0)過(guò)M(2,
) ,N(
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且
?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com