欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知函數(shù)f (x)=.若方程f (x)=x+a有且只有兩個(gè)不相等的實(shí)數(shù)根.則實(shí)數(shù)a的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=,若方程f(x)=x+a有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

[  ]

A.(-∞,0]

B.[0,1]

C.(-∞,1)

D.[0,+∞)

查看答案和解析>>

已知函數(shù)f(x)=,若方程f(x)=x+a有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

[  ]

A.(-∞,0]

B.[0,1]

C.(-∞,1)

D.[1,+∞)

查看答案和解析>>

已知函數(shù)f(x)=,若方程f(x)=x+a有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

[  ]

A.(-∞,0]

B.[0,1]

C.(-∞,1)

D.[0,+∞)

查看答案和解析>>

已知函數(shù)f(x)=,若方程f(x)=x+a有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

[  ]

A.(-∞,0]

B.[0,1]

C.(-∞,1)

D.[0,+∞)

查看答案和解析>>

已知函數(shù)f(x)=,若方程f(x)=x+a有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

[  ]

A.(-∞,1)

B.(0,1)

C.(-∞,1]

D.[ 0,+∞)

查看答案和解析>>

一、選擇題

1.B  2.A  3.C  4.B  5.B  6.D  7.C  8.C  9.D  10.A

二、填空題

11.  12.  13.-6  14.  15.①②③④

三、解答題

16.解:⑴

                                                                                                                  3分

=1+1+2cos2x=2+2cos2x=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                     6分

⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x

      =2cos(2x+)                                                                                            8分

∵0≤x≤  ∴  ∴  ∴

,當(dāng)x=時(shí)取得該最小值

 ,當(dāng)x=0時(shí)取得該最大值                                                                    12分

17.由題意知,在甲盒中放一球概率為時(shí),在乙盒放一球的概率為                  2分

①當(dāng)n=3時(shí),x=3,y=0的概率為                                                 4分

②當(dāng)n=4時(shí),x+y=4,又|x-y|=ξ,所以ξ的可能取值為0,2,4

(i)當(dāng)ξ=0時(shí),有x=2,y=2,它的概率為                                      4分

(ii)當(dāng)ξ=2時(shí),有x=3,y=1或x=1,y=3

   它的概率為

(iii)當(dāng)ξ=4時(shí),有x=4,y=0或x=0,y=4

   它的概率為

故ξ的分布列為

ξ

0

2

4

10分

p

∴ξ的數(shù)學(xué)期望Eξ=                                                             12分

18.解:⑴證明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一點(diǎn)O使AO=AD,連接E,O,

則EO∥PA,∴EO⊥面ABCD 過點(diǎn)O做

OH⊥AC交AC于H點(diǎn),連接EH,則EH⊥AC,

從而∠EHO為二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=,

∴二面角E-AC-D等于arctan                                                                    8分

⑶當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC                                                                         12分

19.⑴據(jù)題意,得                                                4分

                                                                          5分

⑵由⑴得:當(dāng)5<x<7時(shí),y=39(2x3-39x2+252x-535)

當(dāng)5<x<6時(shí),y'>0,y=f (x)為增函數(shù)

當(dāng)6<x<7時(shí),y'<0,y=f (x)為減函數(shù)

∴當(dāng)x=6時(shí),f (x)極大值=f (16)=195                                                                      8分

當(dāng)7≤x<8時(shí),y=6(33-x)∈(150,156]

當(dāng)x≥8時(shí),y=-10(x-9)2+160

當(dāng)x=9時(shí),y極大=160                                                                                           10分

綜上知:當(dāng)x=6時(shí),總利潤最大,最大值為195                                                     12分

20.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

<span id="gww82"></span>
  • <li id="gww82"><legend id="gww82"></legend></li><rt id="gww82"><optgroup id="gww82"></optgroup></rt><center id="gww82"></center>

            1. <li id="gww82"><tbody id="gww82"></tbody></li>
              <bdo id="gww82"></bdo>

                  (x0≠-1且x0≠3)

                  BN:y=  、

                  聯(lián)立①②  ∴                                                                                        4分

                  ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

                  整理:y2=-2(x+1)  (x<-1)                                                                             6分

                  ⑵由

                  設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

                  則x1+x2=-(3+)

                  x1x2                                                                                                           8分

                  中點(diǎn)到直線的距離

                  故圓與x=-總相切.                                                                                         13分

                  ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                   2分

                  頂點(diǎn)(-1,0),故準(zhǔn)線x=-                                                                               4分

                  設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

                  又由拋物線定義:d1+d2=|ST|,∴

                  故以ST為直徑的圓與x=-總相切                                                                      8分

                  21.解:⑴由,得

                  ,有

                      =

                      =

                  又b12a1=2,                                                                               3分

                                                                                                      4分

                  ⑵證法1:(數(shù)學(xué)歸納法)

                  1°,當(dāng)n=1時(shí),a1=1,滿足不等式                                                    5分

                  2°,假設(shè)n=k(k≥1,k∈N*)時(shí)結(jié)論成立

                  ,那么

                                                                                                                         7分

                  由1°,2°可知,n∈N*,都有成立                                                           9分

                  ⑵證法2:由⑴知:                (可參照給分)

                  ,,∴

                    ∵

                    ∴

                  當(dāng)n=1時(shí),,綜上

                  ⑵證法3:

                  ∴{an}為遞減數(shù)列

                  當(dāng)n=1時(shí),an取最大值  ∴an≤1

                  由⑴中知  

                  綜上可知

                  欲證:即證                                                                             11分

                  即ln(1+Tn)-Tn<0,構(gòu)造函數(shù)f (x)=ln(1+x)-x

                  當(dāng)x>0時(shí),f ' (x)<0

                  ∴函數(shù)y=f (x)在(0,+∞)內(nèi)遞減

                  ∴f (x)在[0,+∞)內(nèi)的最大值為f (0)=0

                  ∴當(dāng)x≥0時(shí),ln(1+x)-x≤0

                  又∵Tn>0,∴l(xiāng)n(1+Tn)-Tn<0

                  ∴不等式成立                                                                                           14分