題目列表(包括答案和解析)
在
中,已知
,面積
,
(1)求
的三邊的長;
(2)設(shè)
是
(含邊界)內(nèi)的一點(diǎn),
到三邊
的距離分別是![]()
①寫出
所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識求出
的取值范圍.
【解析】第一問中利用設(shè)
中角
所對邊分別為![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三邊長![]()
![]()
第二問中,①
得
![]()
故![]()
②![]()
令
依題意有![]()
作圖,然后結(jié)合區(qū)域得到最值。
![]()
已知
中,
,
.設(shè)
,記
.
(1) 求
的解析式及定義域;
(2)設(shè)
,是否存在實(shí)數(shù)
,使函數(shù)
的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image010.png">?若存在,求出
的值;若不存在,請說明理由.
【解析】第一問利用(1)如圖,在
中,由
,,
可得
,
又AC=2,故由正弦定理得
(2)中
由
可得![]()
![]()
.顯然,
,則
1
當(dāng)m>0的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">
m+1=3/2,n=1/2
2
當(dāng)m<0,不滿足
的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">;
因而存在實(shí)數(shù)m=1/2
的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">.
已知函數(shù) ![]()
R).
(Ⅰ)若
,求曲線
在點(diǎn)
處的的切線方程;
(Ⅱ)若
對任意 ![]()
恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問中,利用當(dāng)
時,
.
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當(dāng)
時,
.
,
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以
恒成立,
故
在
上單調(diào)遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)
時,
在
上恒成立,
故
在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)
時,令
,對稱軸
,
則
在
上單調(diào)遞增,又
① 當(dāng)
,即
時,
在
上恒成立,
所以
在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)
時,
,
不合題意,舍去 14分
綜上所述:
已知
,函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
在點(diǎn)(1,
)的切線方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中
,那么當(dāng)
時,
又
所以函數(shù)
在點(diǎn)(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當(dāng)
時,
又
∴ 函數(shù)
在點(diǎn)(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當(dāng)
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當(dāng)
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設(shè)
,![]()
對
求導(dǎo),得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實(shí)數(shù)
的取值范圍是(![]()
,
)
| 1 |
| x |
| 2 |
| y |
| xy |
| 1 | ||
|
| 1 |
| x |
| 2 |
| y |
|
| 1 |
| x |
| 2 |
| y |
| 2 |
| 2 |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com