題目列表(包括答案和解析)
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問(wèn)中利用導(dǎo)數(shù)在在
處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。
第二問(wèn)中,利用存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
![]()
(2)不等式
,即
,即
.
轉(zhuǎn)化為存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
設(shè)
,則.![]()
設(shè)
,則
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有
.
故
在區(qū)間
上是減函數(shù)。又![]()
故存在
,使得
.
當(dāng)
時(shí),有
,當(dāng)
時(shí),有
.
從而
在區(qū)間
上遞增,在區(qū)間
上遞減.
又
[來(lái)源:]
![]()
所以當(dāng)
時(shí),恒有
;當(dāng)
時(shí),恒有![]()
;
故使命題成立的正整數(shù)m的最大值為5
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線(xiàn)的斜率為-3.
(1)求f(x)的解析式;
(2)若過(guò)點(diǎn)A(2,m)可作曲線(xiàn)y=f(x)的三條切線(xiàn),求實(shí)數(shù)m的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線(xiàn)的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿(mǎn)足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設(shè)切點(diǎn)為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線(xiàn)方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線(xiàn)過(guò)點(diǎn)A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
![]()
已知
,函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
在點(diǎn)(1,
)的切線(xiàn)方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個(gè)實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中
,那么當(dāng)
時(shí),
又
所以函數(shù)
在點(diǎn)(1,
)的切線(xiàn)方程為
;(2)中令
有 ![]()
![]()
對(duì)a分類(lèi)討論
,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當(dāng)
時(shí),
又
∴ 函數(shù)
在點(diǎn)(1,
)的切線(xiàn)方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當(dāng)
即
時(shí)
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當(dāng)
即
時(shí),
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無(wú)極小值。
綜上所述
時(shí),極大值為
,無(wú)極小值
時(shí) 極大值是
,極小值是
----------8分
(Ⅲ)設(shè)
,![]()
對(duì)
求導(dǎo),得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實(shí)數(shù)
的取值范圍是(![]()
,
)
山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進(jìn)行體育測(cè)試,某校對(duì)高三1班同學(xué)按照高考測(cè)試項(xiàng)目按百分制進(jìn)行了預(yù)備測(cè)試,并對(duì)50分以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.
(Ⅰ)請(qǐng)估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個(gè)小組.若選出的兩人成績(jī)差大于20,則稱(chēng)這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.
![]()
【解析】本試題主要考查了概率的運(yùn)算和統(tǒng)計(jì)圖的運(yùn)用。
(1)由由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05,然后利用平均值公式,可知這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)
(2)中利用90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;得到總參賽人數(shù)為40,然后得到0~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人,第五組中有2人,這樣可以得到基本事件空間為15種,然后利用其中兩人成績(jī)差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種,得到概率值
解:(Ⅰ)由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05; ……………2分
∴這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…4分
(Ⅱ)∵90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;
∴參加測(cè)試的總?cè)藬?shù)為
=40人,……………………………………5分
∴50~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人, …………………………6分
設(shè)第一組50~60分?jǐn)?shù)段的同學(xué)為A1,A2,A3,A4;第五組90~100分?jǐn)?shù)段的同學(xué)為B1,B2
則從中選出兩人的選法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15種;其中兩人成績(jī)差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種 …………………………11分
則選出的兩人為“幫扶組”的概率為![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com