題目列表(包括答案和解析)
學習三角函數(shù)一章時,課堂上老師給出這樣一個結論:當
時,有sinx<x<tanx恒成立,當老師把這個證明完成時,
(Ⅰ)學生甲提出問題:能否在不等式sinx<x的左邊增加一個量,使不等號的方向得以改變?下面請同學們證明:若
,則
成立;
(Ⅱ)當學生甲的問題完成時,學生乙提問:對于不等式x<tanx是否也有相似的結論?下面請同學們探討:若
,是否存在實數(shù)m,使x+mx3>tanx恒成立?如果存在,求出m的一個值;如果不存在,請說明理由.
某同學用《幾何畫板》研究拋物線的性質:打開《幾何畫板》軟件,繪制某拋物線
,在拋物線上任意畫一個點
,度量點
的坐標
,如圖.
![]()
(Ⅰ)拖動點
,發(fā)現(xiàn)當
時,
,試求拋物線
的方程;
(Ⅱ)設拋物線
的頂點為
,焦點為
,構造直線
交拋物線
于不同兩點
、
,構造直線
、
分別交準線于
、
兩點,構造直線
、
.經(jīng)觀察得:沿著拋物線
,無論怎樣拖動點
,恒有![]()
.請你證明這一結論.
(Ⅲ)為進一步研究該拋物線
的性質,某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點
”改變?yōu)槠渌岸c![]()
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“![]()
”成立?如果可以,請寫出相應的正確命題;否則,說明理由.
某同學用《幾何畫板》研究拋物線的性質:打開《幾何畫板》軟件,繪制某拋物線
,在拋物線上任意畫一個點
,度量點
的坐標
,如圖.![]()
(Ⅰ)拖動點
,發(fā)現(xiàn)當
時,
,試求拋物線
的方程;
(Ⅱ)設拋物線
的頂點為
,焦點為
,構造直線
交拋物線
于不同兩點
、
,構造直線
、
分別交準線于
、
兩點,構造直線
、
.經(jīng)觀察得:沿著拋物線
,無論怎樣拖動點
,恒有![]()
.請你證明這一結論.
(Ⅲ)為進一步研究該拋物線
的性質,某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點
”改變?yōu)槠渌岸c![]()
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“![]()
”成立?如果可以,請寫出相應的正確命題;否則,說明理由.
某同學用《幾何畫板》研究拋物線的性質:打開《幾何畫板》軟件,繪制某拋物線
,在拋物線上任意畫一個點
,度量點
的坐標
,如圖.
(Ⅰ)拖動點
,發(fā)現(xiàn)當
時,
,試求拋物線
的方程;
(Ⅱ)設拋物線
的頂點為
,焦點為
,構造直線
交拋物線
于不同兩點
、
,構造直線
、
分別交準線于
、
兩點,構造直線
、
.經(jīng)觀察得:沿著拋物線
,無論怎樣拖動點
,恒有![]()
.請你證明這一結論.
(Ⅲ)為進一步研究該拋物線
的性質,某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點
”改變?yōu)槠渌岸c![]()
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“![]()
”成立?如果可以,請寫出相應的正確命題;否則,說明理由.
![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com