題目列表(包括答案和解析)
已知函數(shù)
,
為
的導(dǎo)函數(shù)。 (1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若對(duì)一切的實(shí)數(shù)
,有
成立,求
的取值范圍;
(3)當(dāng)
時(shí),在曲線
上是否存在兩點(diǎn)
,使得曲線在
兩點(diǎn)處的切線均與直線
交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的最大值;若不存在,請(qǐng)說(shuō)明理由.
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問(wèn)中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時(shí),
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點(diǎn)
,
,
當(dāng)
,即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時(shí),同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時(shí),函數(shù)
的圖象恒在直線
下方.
已知函數(shù)
(
且
).
(1) 試就實(shí)數(shù)
的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2) 已知當(dāng)
時(shí),函數(shù)在
上單調(diào)遞減,在
上單調(diào)遞增,求
的值并寫出函數(shù)的解析式;
(3) (理)記(2)中的函數(shù)的圖像為曲線
,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線
,使得
為曲線
的對(duì)稱軸?若存在,求出
的方程;若不存在,請(qǐng)說(shuō)明理由.
(文) 記(2)中的函數(shù)的圖像為曲線
,試問(wèn)曲線
是否為中心對(duì)稱圖形?若是,請(qǐng)求出對(duì)稱中心的坐標(biāo)并加以證明;若不是,請(qǐng)說(shuō)明理由.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com