題目列表(包括答案和解析)
如圖,已知橢圓
=1(a>b>0)的離心率為
,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(
+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
![]()
(1)求橢圓和雙曲線的標準方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
已知函數(shù)f(x)=2x+a.
(1)對于任意實數(shù)x1,x2,試比較
與f(
-1)的大小;
(2)已知P=[1,4],若關(guān)于x的不等式f(ax2-4x)>4+a的解集為M,且P∩M≠∅,求實數(shù)a的取值范圍.
(本題滿分15分)已知橢圓
=1(a為常數(shù),且a>1),向量
=(1, t) (t >0),過點A(-a, 0)且以
為方向向量的直線與橢圓交于點B,直線BO交橢圓于點C(O為坐標原點).
(1) 求t表示△ABC的面積S( t );![]()
(2) 若a=2,t∈[
, 1],求S( t )的最大值.
在平面直角坐標系xOy中,如圖,已知橢圓
=1的左、右頂點為A、B,右焦點為F.設(shè)過點T(t,m)的直線TA,TB與此橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
![]()
(1)設(shè)動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設(shè)x1=2,x2=
,求點T的坐標;
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關(guān)).
如圖,已知橢圓
=1(a>b>0)過點(1,
),離心率為
,左、右焦點分別為F1、F2.點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.
![]()
(1)求橢圓的標準方程.
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2.
(ⅰ)證明:
=2.
(ⅱ)問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com