題目列表(包括答案和解析)
設(shè)橢圓
的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問(wèn)中∵
,∴
,…………………1分
∵
,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由
,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
(10分)如圖,這是一個(gè)獎(jiǎng)杯的三視圖,(1)請(qǐng)你說(shuō)明這個(gè)獎(jiǎng)杯是由哪些基本幾何體組成的;(2)求出這個(gè)獎(jiǎng)杯的體積(列出計(jì)算式子,將數(shù)字代入即可,不必求出最終結(jié)果).
![]()
如圖,已知直線
(
)與拋物線
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)
是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
、
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)
所在的定直線為
, 直線
與
軸交點(diǎn)為
,連接
交拋物線
于
、
兩點(diǎn),求△
的面積
的取值范圍.
![]()
【解析】第一問(wèn)中利用圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即
,解得
(
舍去)
設(shè)
與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:
,∴
所以
,![]()
第二問(wèn)中,由(Ⅰ)知拋物線
方程為
,焦點(diǎn)
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令
,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線![]()
第三問(wèn)中,設(shè)直線
,代入
得
結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即
,解得
(
舍去). …………………(2分)
設(shè)
與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線
方程為
,焦點(diǎn)
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令
,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
上.…(2分)
(Ⅲ)設(shè)直線
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是![]()
已知函數(shù)f(x)=
sin(ωx+φ)
(0<φ<π,ω>0)過(guò)點(diǎn)
,函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移
個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.
【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運(yùn)用,第一問(wèn)中利用函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
.得
,
所以![]()
第二問(wèn)中,![]()
![]()
,
![]()
可以得到單調(diào)區(qū)間。
解:(Ⅰ)由題意得
,
,…………………1分
代入點(diǎn)
,得
…………1分
,
∴![]()
(Ⅱ)
,![]()
![]()
的單調(diào)遞減區(qū)間為
,
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com