題目列表(包括答案和解析)
設f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導函數(shù)為f′(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質P(a).
(1)設函數(shù)f(x)=ln x+
(x>1),其中b為實數(shù).
①求證:函數(shù)f(x)具有性質P(b);
②求函數(shù)f(x)的單調區(qū)間;
(2)已知函數(shù)g(x)具有性質P(2).給定x1,x2∈(1,+∞),x1<x2,設m為實數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.
已知函數(shù)f(x)=
x3+ax2+bx,a,b∈R.
(Ⅰ)若a=-
,b=
,試求函數(shù)g(x)=m[f(x)-
x](m∈R,m≠0)的極小值;
(Ⅱ)若f(x)在區(qū)間(1,2)內存在兩個極值點,求證:0<a+b<2.
(14分)已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調遞增,在區(qū)間[1,2]上單調遞減;
(1)求a的值;
(2)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有2個交點,若存在,求出實數(shù)b的值;若不存在,試說明理由。
(3)若對任意實數(shù)m∈[﹣6,﹣2],不等式
,在x∈[﹣1,1]上恒成立,求實數(shù)n的取值范圍。
(14分)已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調遞增,在區(qū)間[1,2]上單調遞減;
(1)求a的值;
(2)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有2個交點,若存在,求出實數(shù)b的值;若不存在,試說明理由。
(3)若對任意實數(shù)m∈[﹣6,﹣2],不等式
,在x∈[﹣1,1]上恒成立,求實數(shù)n的取值范圍。
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com