題目列表(包括答案和解析)
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對(duì)任意的
有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
![]()
由
,得![]()
當(dāng)x變化時(shí),
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時(shí),取
,有
,故
時(shí)不合題意.當(dāng)
時(shí),令
,即![]()
![]()
令
,得![]()
①當(dāng)
時(shí),
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對(duì)于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時(shí),
,對(duì)于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時(shí),
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時(shí),不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時(shí),![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
(本小題滿分12分)已知函數(shù)![]()
(I)若函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)a的取值范圍;
(II)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)k的取值范圍.
(Ⅲ)求證:解:(1)
,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則
令
,
則
,
當(dāng)
時(shí),
;當(dāng)
時(shí),![]()
在(0,1)上單調(diào)遞增,在
上單調(diào)遞減,
即當(dāng)
時(shí),函數(shù)
取得極大值. (3分)
函數(shù)
在區(qū)間
上存在極值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,則
,
,即
在
上單調(diào)遞增, (7分)
,從而
,故
在
上單調(diào)遞增, (7分)
(8分)
(3)由(2)知,當(dāng)
時(shí),
恒成立,即
,
令
,則
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
已知函數(shù) ![]()
R).
(Ⅰ)若
,求曲線
在點(diǎn)
處的的切線方程;
(Ⅱ)若
對(duì)任意 ![]()
恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問中,利用當(dāng)
時(shí),
.
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當(dāng)
時(shí),
.
,
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以
恒成立,
故
在
上單調(diào)遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)
時(shí),
在
上恒成立,
故
在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)
時(shí),令
,對(duì)稱軸
,
則
在
上單調(diào)遞增,又
① 當(dāng)
,即
時(shí),
在
上恒成立,
所以
在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)
時(shí),
,
不合題意,舍去 14分
綜上所述:
(本題9分)已知函數(shù)
。
(Ⅰ)若
在
上的最小值是
,試解不等式
;
(Ⅱ)若
在
上單調(diào)遞增,試求實(shí)數(shù)
的取值范圍。
設(shè)函數(shù)
.
(1)若
在
和
處有不同的極值,且極大值為4,
極小值為1,求
及實(shí)數(shù)
的值;
(2) 若
在
上單調(diào)遞增且
,求
的最大值.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com