欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知..均為正整數.且.等差數列的首項為.公差為.等比數列的首項為.公比為.且.在數列和中各存在一項與.使得.又. 查看更多

 

題目列表(包括答案和解析)

(14分) 已知各項均為正數的數列滿足、的等差中項

(1)求數列的通項公式;

(2)若,求使成立的正整數的最小值。

查看答案和解析>>

2、已知數列{an}是各項均為正整數的等比數列,數列{bn}是等差數列,且a6=b7,則有( 。

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個不同的點(n∈N*,k、b均為非零常數),其中數列{xn}為等差數列.
(1)求證:數列{yn}是等差數列;
(2)若點P是直線l上一點,且
OP
=a1
OA1
+a2
OA2
,求證:a1+a2=1;
(3)設a1+a2+…+an=1,且當i+j=n+1時,恒有ai=aj(i和j都是不大于n的正整數,且i≠j).試探索:在直線l上是否存在這樣的點P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?請說明你的理由.

查看答案和解析>>

已知各項均為整數的數列{an}滿足:a9=-1,a13=4,且前12項依次成等差數列,從第11項起依次成等比數列.
(1)求數列{an}的通項公式;
(2)若存在正整數m、p使得:am+am+1+…+am+p=amam+1…am+p,請找出所有的有序數對(m,p),并證明你的結論.

查看答案和解析>>

、已知各項均為正數的數列{an}滿足2a2n+1+3an+1an-2a2n=0(n)且a3+是a2,a4的等差中項,數列{bn}的前n項和Sn=n2   

   (1)求數列{an}與{bn}的通項公式;

(2)若Tn=,求證:Tn<

(3)若,且Kn=c1+c2+…+cn,求使Kn+n2n+1>125成立的正整數n的最小值

 

查看答案和解析>>

 

1.B       2.D      3.A      4.C       5.C       6.D      7.D      8.B       9.C       10.B

11.A     12.C

1.,所以選B.

2.,所以選D.

3.,所以選

4.,所以選C.

5.,所以選C.

6.,切線斜率

       ,所以選D.

7.觀察圖象.所以選D.

8.化為,所以選B.

9.關于對稱,,所以選C.

10.直線與橢圓有公共點,所以選B.

11.如圖,設,則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.分類涂色① 只用3種顏色,相對面同色,有1種涂法;② 用4種顏色,有種涂法;③ 用五種顏色,有種涂法.共有13種涂法.所以選C.

二、

13.7.由(舍去),

       項的余數為

14.依題設,又,點所形成的平面區(qū)域為邊長為1的正方形,其面積為1.

15.,由,得

      

16.

      

如圖,可設,又

       當面積最大時,.點到直線的距離為

三、

17.(1)

             

              由,

              的單調遞減區(qū)間為

       (2)

                  

                         

18.(1)的所有取值為0.8,0.9,1.0,1.125,1.25,其分布列為

0.8

0.9

1.0

1.125

1.25

0.2

0.15

0.35

0.15

0.15

              的所有取值為0.8,0.96,1.0,1,2,1.44,其分布列為     

0.8

0.96

1.0

1.2

1.44

0.3

0.2

0.18

0.24

0.08

(2)設實施方案一、方案二兩年后超過危機前出口額的概率為,,則

             

              ∴實施方案二兩年后超過危機前出口額的概率更大.

(3)方案一、方案二的預計利潤為、,則   

10

15

20

0.35

0.35

0.3

      

10

15

20

0. 5

0.18

0.32

                  

∴實施方案一的平均利潤更大

19.(1)設交于點

             

             

             

              從而,即,又,且

              平面為正三角形,的中點,

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設的中點,連接,則,

              平面,過點,連接,則

              為二面角的平面角.

              在中,

              又

20.(1)由,得,則

              又為正整數,

             

              ,故

(2)

      

       ∴當時,取得最小值

21.(1)由

              ∴橢圓的方程為:

(2)由,

      

       又

設直線的方程為:

              由此得.                                   ①

              設與橢圓的交點為,則

              www.ks5u.com由

              ,整理得

              ,整理得

              時,上式不成立,                ②

              由式①、②得

             

              ∴取值范圍是

22.(1)由

              令,則

              當時,上單調遞增.

                 的取值范圍是

       (2)

              ① 當時,是減函數.

              時,是增函數.

② 當時,是增函數.

綜上;當時,增區(qū)間為,,減區(qū)間為

時,增區(qū)間為

 


同步練習冊答案