欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

橢圓C的中心坐標(biāo)為原點O.焦點在y軸上.焦點到相應(yīng)準(zhǔn)線的距離以及離心率均為 (1)求橢圓方程, 查看更多

 

題目列表(包括答案和解析)

橢圓C的中心坐標(biāo)為原點O,焦點在y軸上,焦點到相應(yīng)準(zhǔn)線的距離以及離心率均為
2
2
,直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A
AP
PB

(1)求橢圓方程;
(2)若
OA
OB
=4
OP
,求m
的取值范圍?.

查看答案和解析>>

橢圓C的中心坐標(biāo)為原點O,焦點在y軸上,焦點到相應(yīng)準(zhǔn)線的距離以及離心率均為
2
2
,直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A
AP
PB

(1)求橢圓方程;
(2)若
OA
OB
=4
OP
,求m
的取值范圍?.

查看答案和解析>>

橢圓C的中心為坐標(biāo)原點O,焦點在y軸上,離心率e=
2
2
,橢圓上的點到焦點的最短距離為1-
2
2
,直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
AP
PB

(1)求橢圓方程;
(2)若
OA
OB
=4
OP
,求m的取值范圍.

查看答案和解析>>

橢圓C的中心為坐標(biāo)原點O,焦點在y軸上,短軸長為
2
、離心率為
2
2
,直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
AP
=3
PB

(I)求橢圓方程;
(II)求m的取值范圍.

查看答案和解析>>

橢圓C的中心為坐標(biāo)原點O,焦點在y軸上,離心率e=
2
2
,橢圓上的點到焦點的最短距離為1-e,直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
AP
PB

(1)求橢圓C的方程;
(2)若
OA
OB
=4
OP
,求m的取值范圍.

查看答案和解析>>

 

一、選擇題:本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個是符合題目要求的。

1―8 BDCAABCB

二、填空題:本大題共有6個小題,每小題5分,共30分;請把答案寫在相應(yīng)的位置上。

9.    10.    11.7    12.    13.    14.

三、解答題:本大題共6個小題,共80分;解答應(yīng)寫出文字說明,證明過程或演算步驟。

15.(本題滿分13分)

解:

   (1)

   (2)由(1)知,

16.(本題滿分13分)

    解:(1)表示經(jīng)過操作以后袋中只有1個紅球,有兩種情形出現(xiàn)

①先從中取出紅和白,再從中取一白到

②先從中取出紅球,再從中取一紅球到

。 ………………7分

   (2)同(1)中計算方法可知:。

于是的概率分布列

0

1

2

3

P

  。 ………………13分

17.(本題滿分13分)

解法1:(1)連結(jié)MA、B1M,過M作MN⊥B1M,且MN交CC1點N,

    • <p id="wx0ke"></p>

      又∵平面ABC⊥平面BB1C1C,

      平面ABC∩平面BB1C1C=BC,

      ∴AM⊥平面BB1C1C

      ∵MN平面BB1C1C

      ∴MN⊥AM。

      ∵AM∩B1M=M,

      ∴MN⊥平面AMB1,∴MN⊥AB1。

      ∵在Rt△B1BM與Rt△MCN中,

      即N為C1C四等分點(靠近點C)。  ……………………6分

         (2)過點M作ME⊥AB1,垂足為R,連結(jié)EN,

      由(1)知MN⊥平面AMB1,

      ∴EN⊥AB1,

      ∴∠MEN為二面角M―AB1―N的平面角。

      ∵正三棱柱ABC―A1B1C1,BB1=BC=2,

    • <rp id="wx0ke"></rp>

      ∴N點是C1C的四等分點(靠近點C)。  ………………6分

         (2)∵AM⊥BC,平面ABC⊥平面BB1C1C,

      且平面ABC∩平面BB1C1C=BC,

      ∴AM⊥平面BB1C1C,

      ∵MN平面BB1C1,∴AM⊥MN,

      ∵MN⊥AB1,∴MN⊥平面AMB1

       

      18.(本題滿分13分)

      解:(1)

         (2)當(dāng)

         (3)令

           ①

           ②

      ①―②得   ………………13分

      19.(本題滿分14分)

      解:(1)設(shè)橢圓C的方程:

         (2)由

              ①

      由①式得

      20.(本題滿分14分)

      解:(1)

         (2)證明:①在(1)的過程中可知

      ②假設(shè)在

      綜合①②可知:   ………………9分

         (3)由變形為:

         

       

       

      <blockquote id="wx0ke"><video id="wx0ke"><dfn id="wx0ke"></dfn></video></blockquote>