欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(1)求的解析式, 查看更多

 

題目列表(包括答案和解析)





.
(Ⅰ)求的解析式;
(Ⅱ)若數(shù)列滿(mǎn)足:),且, 求數(shù)列的通項(xiàng);
(Ⅲ)求證:

查看答案和解析>>





(1)求的解析式;
(2) 當(dāng)時(shí),不等式:恒成立,求實(shí)數(shù)的范圍.
(3)設(shè),求的最大值;

查看答案和解析>>



(1)求的解析式;
(2)若對(duì)于實(shí)數(shù),不等式恒成立,求t
的取值范圍.

查看答案和解析>>

求解析式:
(1)已知f(
1
x
)=
x
1-x2
,求f(x); 
(2)已知二次函數(shù)f(x)滿(mǎn)足f(0)=0且f(x+1)=f(x)+x+1,求f(x)的表達(dá)式.

查看答案和解析>>


(1)求時(shí),的解析式;
(2)若關(guān)于的方程有三個(gè)不同的解,求a的取值范圍。
(3)是否存在正數(shù)、,當(dāng)時(shí),,且的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131155070316.gif" style="vertical-align:middle;" />.若存在,求出a、b 的值;若不存在,說(shuō)明理由

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個(gè)單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線(xiàn)與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫(huà)可行域 可知符合條件的點(diǎn)是:共6個(gè)點(diǎn),故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又,

       當(dāng)面積最大時(shí),.點(diǎn)到直線(xiàn)的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則

       (2)設(shè)兩年后出口額超過(guò)危機(jī)前出口額的事件為,則

19.(1)設(shè)交于點(diǎn)

             

             

             

              從而,即,又,且

              平面為正三角形,的中點(diǎn),

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點(diǎn),連接,則,

              平面,過(guò)點(diǎn),連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

         

                      時(shí),時(shí),

                      處取得極小值

                                                 ③

                由式①、②、③聯(lián)立得:

               

               (2)

                   ∴當(dāng)時(shí),上單調(diào)遞減,

                當(dāng)時(shí),

                      當(dāng)時(shí),在[2,3]上單調(diào)遞增,

        22.(1)由

                   ∴橢圓的方程為:

        (2)由,

              

               又

        設(shè)直線(xiàn)的方程為:

                      由此得.                                   ①

                      設(shè)與橢圓的交點(diǎn)為,則

                      由

                      ,整理得

                      ,整理得

                      時(shí),上式不成立,          ②

                由式①、②得

               

                ∴取值范圍是