題目列表(包括答案和解析)
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當(dāng)
,即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時,同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時,函數(shù)
的圖象恒在直線
下方.
(本題滿分18分,第1小題6分,第2小題6分,第3小題6分)
對于定義在D上的函數(shù)
,若同時滿足
(Ⅰ)存在閉區(qū)間
,使得任取
,都有
是常數(shù));
(Ⅱ)對于D內(nèi)任意
,當(dāng)
時總有
,則稱
為“平底型”函數(shù)。
(1)判斷
是否是“平底型”函數(shù)?簡要說明理由;
(2)設(shè)
是(1)中的“平底型”函數(shù),若
,對一切
恒成立,求實數(shù)
的范圍;
(3)若
是“平底型”函數(shù),求
和
滿足的條件,并說明理由。
[番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。
若實數(shù)
、
、
滿足
,則稱
比
遠(yuǎn)離
.
(1)若
比1遠(yuǎn)離0,求
的取值范圍;
(2)對任意兩個不相等的正數(shù)
、
,證明:
比
遠(yuǎn)離
;
(3)已知函數(shù)
的定義域
.任取
,
等于
和
中遠(yuǎn)離0的那個值.寫出函數(shù)
的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓
的方程為
,點P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點M、A(0,-b),B(a,0)滿足
,求點
的坐標(biāo);
(2)設(shè)直線
交橢圓
于
、
兩點,交直線
于點
.若
,證明:
為
的中點;
(3)對于橢圓
上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個交點
、
滿足
,寫出求作點
、
的步驟,并求出使
、
存在的θ的取值范圍.
[番茄花園1]22.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com