題目列表(包括答案和解析)
已知函數(shù)
,其中
.
(1)若
在
處取得極值,求曲線
在點
處的切線方程;
(2)討論函數(shù)
在
的單調(diào)性;
(3)若函數(shù)
在
上的最小值為2,求
的取值范圍.
【解析】第一問,
因
在
處取得極值
所以,
,解得
,此時
,可得求曲線
在點
處的切線方程為:![]()
第二問中,易得
的分母大于零,
①當(dāng)
時,
,函數(shù)
在
上單調(diào)遞增;
②當(dāng)
時,由
可得
,由
解得![]()
第三問,當(dāng)
時由(2)可知,
在
上處取得最小值
,
當(dāng)
時由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數(shù)
在
上的最小值為2時,求
的取值范圍是![]()
已知函數(shù)
,(
),![]()
(1)若曲線
與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當(dāng)
時,若函數(shù)
的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1)
,
∵曲線
與曲線
在它們的交點(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)令
,當(dāng)
時,![]()
令
,得![]()
時,
的情況如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函數(shù)
的單調(diào)遞增區(qū)間為
,
,單調(diào)遞減區(qū)間為![]()
當(dāng)
,即
時,函數(shù)
在區(qū)間
上單調(diào)遞增,
在區(qū)間
上的最大值為
,
當(dāng)
且
,即
時,函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增,在區(qū)間
上單調(diào)遞減,
在區(qū)間
上的最大值為![]()
當(dāng)
,即a>6時,函數(shù)
在區(qū)間
內(nèi)單調(diào)遞贈,在區(qū)間
內(nèi)單調(diào)遞減,在區(qū)間
上單調(diào)遞增。又因為![]()
所以
在區(qū)間
上的最大值為
。
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的最小正周期;
(Ⅱ)求函數(shù)
在區(qū)間
上的最大值和最小值.
【解析】(1)![]()
![]()
所以,
的最小正周期![]()
(2)因為
在區(qū)間
上是增函數(shù),在區(qū)間
上是減函數(shù),
又
,
,
,
故函數(shù)
在區(qū)間
上的最大值為
,最小值為-1.
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時
單調(diào)遞減;當(dāng)
時
單調(diào)遞增,故當(dāng)
時,
取最小值![]()
于是對一切
恒成立,當(dāng)且僅當(dāng)
. 、
令
則![]()
當(dāng)
時,
單調(diào)遞增;當(dāng)
時,
單調(diào)遞減.
故當(dāng)
時,
取最大值
.因此,當(dāng)且僅當(dāng)
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數(shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出
取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
設(shè)函數(shù)
,其中
為自然對數(shù)的底數(shù).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)記曲線
在點
(其中
)處的切線為
,
與
軸、
軸所圍成的三角形面積為
,求
的最大值.
【解析】第一問利用由已知
,所以
,
由
,得
,
所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
第二問中,因為
,所以曲線
在點
處切線為
:
.
切線
與
軸的交點為
,與
軸的交點為
,
因為
,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時,
有最大值,此時
,
解:(Ⅰ)由已知
,所以
,
由
,得
, 所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
即函數(shù)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(Ⅱ)因為
,所以曲線
在點
處切線為
:
.
切線
與
軸的交點為
,與
軸的交點為
,
因為
,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時,
有最大值,此時
,
所以,
的最大值為![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com